ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 139-147

Variability of the Arctic sea ice microwave emission at 89 GHz under winter conditions

E.V. Zabolotskikh 1 , M.A. Zhivotovskaya‎ 1 , N.Yu.‎ Zakhvatkina‎ 2, 3, 1 , B. Chapron 4, 1 
1 Russian State Hydrometeorological University, Saint Petersburg, Russia
2 Arctic and Antarctic Research Institute, Saint Petersburg, Russia
3 Scientific Foundation “Nansen International Environmental and Remote Sensing Centre”, Saint Petersburg, Russia
4 Institut Français de Recherche pour l’Exploitation de la Mer, Plouzané, France
Accepted: 20.02.2018
DOI: 10.21046/2070-7401-2018-15-3-139-147
Spatial variability of the sea ice vertically and horizontally polarized microwave radiation at 89 GHz in January and February 2015 is studied using the Advanced Microwave Scanning Radiometer 2 (AMSR2) measurements from GCOM-W1 satellite. Physical modeling of the microwave radiation transfer in the sea-ice-atmosphere system under non-scattering conditions is used to calculate the brightness temperatures (BTs) of the sea ice microwave radiation at 89 GHz from the AMSR2 measured brightness and Era-Interim re-analysis data, taken to estimate the atmospheric emission and absorption. Era-Interim data on the sea ice temperature are also used to downscale the sea ice BTs to the sea ice emissivities. Totally consolidated sea ice areas are selected on the basis of the Sentinel-1 Synthetic Aperture Radar (SAR) image expert analysis. The analysis of the results ensured the selection of the areas of high and low microwave radiation of the Arctic sea ice. The areas of low microwave radiation intensity are found both in multi year ice and in first year ice regions. The regions of comparatively high values (>20 K) of the polarization difference at 89 GHz are defined. For these regions the standard algorithms of the sea ice concentration retrieval will definitely underestimate the real concentration values.
Keywords: sea ice, Arctic, microwave radiation, brightness temperatures, physical modeling, AMSR2, Sentinel-1, Era-Interim
Full text


  1. ‎1. Ivanov V. V., Alexeev V. A., Alexeeva T. A., Koldunov N. V., Repina I. A., Smirnov A. V., Arkticheskii ledyanoi pokrov stanovitsya sezonnym? (Is the Arctic sea ice getting seasonal ‎character?), Issledovaniya Zemli iz kosmosa, 2013, No. 4, pp. 50–65.
  2. Smirnov V. G., Bushuev A. V., Zahvatkina N. Yu., Loschilov V. S., Sputnikovyi monitoring morskikh ldov (Satellite monitoring of the sea ice), Problemy Arktiki i Antarktiki, 2010, Vol. 85, No. 2, pp. 62–76.
  3. Tikhonov V. V., Raev M. D., Sharkov E. A., Boyarskii D. A., Repina I. A., Komarova N. Yu., Monitoring morskogo lda polyarnykh regionov s ispolzovaniem sputnikovoi mikrovolnovoi radiometrii (Polar region sea ice monitoring using satellite passive microwave radiometer data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 150–169.
  4. Andersen S., Tonboe R., Kern S., Schyberg H., Improved retrieval of sea ice total concentration from spaceborne passive microwave observations using numerical weather prediction model fields: an intercomparison of nine algorithms, Remote Sens. Environ., 2006, Vol. 104, pp. 374–392.
  5. Carsey F., Arctic fall onset of sea ice, J. Geophys. Res., 1982, Vol. 87, pp. 5809–5835.
  6. Cavalieri D. J., Gloersen P., Campbell W. J., Determination of sea ice parameters with the Nimbus 7 SMMR, J. Geophys. Res., 1984, Vol. 89, pp. 5355–5369.
  7. Comiso J. C., Sea ice effective microwave emissivities from satellite passive microwave and infrared observations, J. Geophys. Res., 1983, Vol. 88, pp. 7686–7704.
  8. Gloersen P., Nordberg W., Schmugge T. J., Wilheit T. T., Campbell W. J., Microwave signatures of first-year and multiyear sea ice, J. Geophys. Res., 1973, Vol. 78, pp. 3564–3572.
  9. Kaleschke L., Lupkes C., Vihma T., Haarpaintner J., Bochert A., Hartmann J., Heygster G., SSM/I Sea ice remote sensing for mesoscale ocean–atmosphere interaction analysis, Can. J. Remote Sens., 2001, Vol. 27, pp. 526–537.
  10. Markus T., Cavalieri D. J., An enhancement of the NASA Team sea ice algorithm, IEEE Trans. Geosci. Rem. Sens., 2000, Vol. 38, pp. 1387–1398.
  11. Spreen G., Kaleschke L., Heygster G., Sea Ice Remote Sensing Using AMSR-E 89 GHz Channels, J. Geophys. Res., 2008, Vol. 113, pp. 1–14.
  12. Svendsen E., Kloster K., Farrelly K. B., Johannessen O. M., Johannessen J. A., Campbell W. J., Gloersen P., Cavalieri D. J., Matzler C., Norwegian Remote Sensing Experiment: Evaluation of the Nimbus 7 Scanning multichannel microwave radiometer for sea ice research, J. Geophys. Res., 1983, Vol. 88, pp. 2781–2792.
  13. Tikhonov V. V., Repina I. A., Raev M. D., Sharkov E. A., Ivanov V. V., Boyarskii D. A., Alexeeva T. A., Komarova N. Yu., A physical algorithm to measure sea ice concentration from passive microwave remote sensing data, Adv. Space Res., 2015, Vol. 56, No. 8, pp. 1578–1589.
  14. Troy B. E., Hollinger J. P., Lerner R. M., Wisler M. M., Measurement of the microwave properties of sea ice at 90 GHz and lower frequency, J. Geophys. Res., 1981, Vol. 86, pp. 4283–4289.
  15. Tucker W. B., Grenfell T. C., Onstott R. G., Perovich D. K., Gow A. J., Snuchman R. A., Sutherland L. L., Microwave and physical properties of sea ice in the winter Marginal Ice Zone, J. Geophys. Res., 1991, Vol. 96(C3), pp. 4573–4587.
  16. Ulaby F. T., Moore R. K., Fung A. K., Microwave Remote Sensing, Active and Passive, 1986, Vol. III: From Theory to Applications, 1705 p.
  17. Vant M. R., Gray R. B., Ramseier R. O., Makios V., Dielectric properties of fresh sea ice at 10 and 35 GHz, J. Appl. Phys., 1974, Vol. 4, pp. 4712–4717.
  18. Zabolotskikh E. V., Mitnik L. M., Chapron B., New approach for severe marine weather study using satellite passive microwave sensing, Geophys. Res. Lett., 2013, Vol. 40, pp. 1–4.
  19. Zabolotskikh E. V., Reul N., Chapron B., Geophysical model function for the AMSR2 C- band wind excess emissivity at high winds, IEEE Geosc. Rem. Sens. Let., 2016, Vol. 13, pp. 78–81.