ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 236-242

Analysis of spectra measured by SI-1 device

Yu.M. Timofeyev 1 , A.V. Polyakov 1 , W. Dohler 2 , D. Spankuch 3, 2, 4 , D. Oertel 5 
1 Saint Petersburg State University, Saint Petersburg, Russia
2 formerly at GDR Meteorological service, -, Gernany
3 Leibniz-Sozietät der Wissenschaften zu Berlin e. V., Berlin, Germany
4 formerly at German Weather Service, Berlin, Germany
5 formerly at Space Research Institute AS GDR, Berlin, Germany
Accepted: 19.03.2018
DOI: 10.21046/2070-7401-2018-15-3-236-242
The analysis of integral form of the radiative transfer equation shows that vertical gradients of temperature profiles in the atmosphere are the major factor defining possibilities for retrieving characteristics of atmospheric gas composition from measurements of outgoing thermal IR radiation spectra (including the SI-1 measurements). When the temperature vertical gradient is close to zero (for example in the presence of the temperature inversion layer), the absorption band of methane is not detectable in the spectra obtained by the SI-1 instrument in 1977 and 1979. On the basis of the analysis of brightness temperatures in different absorption bands (bands of CO2 at 15 m, O3 at 9.6 m and CH4 at 7.6 m) the scattering diagram of amplitudes of spectral variations of outgoing radiation has been received and studied. It is shown that the SI-1 device is sensitive to natural variations of outgoing thermal radiation caused by not only CO2, ozone and methane variations, but also variations of such gases as H2O, HNO3 and N2O. The N2O, CFC-11 and CFC-12 contents can not be estimated from SI-1 data without the essential spatial averaging of satellite measurements for the suppression of random measurement errors.
Keywords: thermal radiation, satellite remote sensing of atmosphere, atmospheric composition
Full text


  1. Golovko V. A., Kyrakin V. S., Pakhomov L. A., Odnovremennoe opredelenie temperatury, otnositel’nogo geopotentsiala, udelnoi vlazhnosti, obschego soderzhania ozona v atmosphere i temperatury poverkhnosti okeana statisticheskim metodom interpretatsii izluchenia, izmeryaemogo spektrometrom-interferometrom (Simultaneous determination of temperature, relative geopotential, specific humidity, the total ozone in the atmosphere and the ocean surface temperatures by a statistical method of interpretation of the radiation measured by a spectrometer-interferometer), Distantsionnoe zondirovanie atmosfery so sputnika “Meteor”, Leningrad: Gigrometeoizdat, 1979, pp. 79–95.
  2. Dosov V. N., Pakhomov L. A., Prokhorov A. P., Opredelenie obschego soderzhaniya ozona po ukhodyaschemu teplovomu izlycheniyu v polose 9,6 mkm (Determination of the total ozone from the outgoing thermal radiation in the 9.6 µm band), Distantsionnoe zondirovanie atmosfery so sputnika “Meteor”, Leningrad: Gigrometeoizdat, 1979, pp. 113–119.
  3. Kondratyev K. Ya., Timofeev Yu. M., Termicheskoe zondirovanie atmosphery so spytnikov (Thermal Sounding of Atmosphere from Satellites), Leningrad: Gidrometeoizdat, 1970, 410 p.
  4. Kondratyev K. Ya., Timofeev Yu. M., Meteorologicheskoe zondirovanie atmosphery iz kosmosa (Meteorological Sounding of Atmosphere from Space), Leningrad: Gidrometeoizdat, 1978, 280 p.
  5. Timofeev Yu. M., Vasiliyev A. V., Teoreticheskie osnovy atmosfernoi optiki (Theoretical Foundations of Atmospheric Optics), Saint Petersburg: Nauka, 2003, 474 p.
  6. Uspensky A. B., Ryblev A. N., Sovremennoe sostoyanie i perspektivy spytnikovogo giperspectral’nogo atmosphernogo zondirovaniya (Current state and perspectives of satellite hyperspectral atmospheric sounding), Issledovanie Zemli iz kosmosa, 2013, No. 6, pp. 4–15.
  7. Anderson J. G., Dykema J. A., Goody R. M., Hu H., Kirk-Davidoff D. B., Absolute, spectrally-resolved, thermal radiance: a benchmark for climate monitoring from space, J. Quant. Spectrosc. Radiat. Transf., 2004, Vol. 85, pp. 367–383.
  8. Bertrand T., Coppens D., Döhler W., Damiano A., Oertel D., Klaes D., Schmetz J., Spänkuch D., A Glimpse into the past: Rescuing hyperspectral SI-1 data from METEOR-28 and 29, Proc. 2015 EUMETSAT Meteorological Satellite Conference, 21–25 September, 2015, Toulouse, France.
  9. Clerbaux C., Chazette P., Hadji-Lazaro J., Mdgie G., Miiller J.-F., Clough S. A., Remote sensing of CO, CH4, and O3 using a spaceborne nadir-viewing interferometer, J. Geoph. Res., 1998, Vol. 103, No. D15, pp. 18 999–19 013.
  10. Hanel R., Conrath B., Preliminary Results from the Interferometer Experiment on Nimbus III, Science, 1969, Vol. 165, No. 3899, pp. 1258–1260.
  11. Harries J. E., Brindley H. E., Sagoo P. J., Bantges R. J., Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997, Nature, 2001, Vol. 410, pp. 355–357.
  12. Kempe V., Oertel D., Schuster R., Becker-Ross H., Jahn H., Absolute IR-spectra from the measurement of Fourier-spectrometers aboard Meteor 25 and 28, Acta Astronautica, 1980, Vol. 7, No. 12, pp. 1403–1416.
  13. Smith W. L., Revercomb H., Bingham G., Larar A., Huang H., Zhou D., Li J., Liu X., Kireev S., Technical note: Evolution, current capabilities, and future advances in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere, Atmos. Chem. Phys., 2009, Vol. 9, pp. 5563–5574.
  14. Wark D. Q., Hilleary D. T., Atmospheric Temperature: Successful Test of Remote Probing, Science, 1969, Vol. 165, No. 3899, pp. 1256–1258.