ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 103-113

Identification and analysis of deadwood using an unmanned aerial vehicle

P.Yu. Sannikov 1 , D.N. Andreev 1 , S.A. Buzmakov 1 
1 Perm State University, Perm, Russia
Accepted: 19.03.2018
DOI: 10.21046/2070-7401-2018-15-3-103-113
The demand for aerial photography performed by unmanned aerial vehicle has been growing quite rapidly in recent years both in Russia and worldwide. The range of tasks solved with the help of the aerial photography is quite wide. It includes applied problems as well as fundamental research questions. Forest area research appears to be one of the most popular objectives. The article presents a brief review of scientific literature devoted to the study of forest communities using unmanned aerial vehicles (UAVs) along with a concise overview of the technical parameters of the UAV. The main stages of obtaining an orthophoto by means of computer processing of primary survey materials have been formulated. The model object of aerial photography for this survey is Preduralye landscape reserve, located in the east of the European part of Russia, in the Priuralie region. The reserve is the fairly large (2290 hectares) natural complex, occupying the canyon valley of the river Sylva. The major part of Preduralye reserve is covered by mixed coniferous-deciduous forests, with prevalence of spruce, pine, linden, and birch. Aerial photography analysis made it possible to identify deadwood within the reserve boundaries. The research studied single-stand and aggregated distribution of dry wood, position of dead trees relative to the forest districts and the main geomorphological elements of the Sylva valley. Finally, statistical parameters of dry wood density in forests of different tree species composition and age were calculated.
Keywords: unmanned aerial vehicle, orthophoto, photogrammetry, forest, deadwood
Full text

References:

  1. Aleshko R. A., Alekseeva A. A., Shoshina K. V., Bogdanov A. P., Guriev A. T., Razrabotka metodiki aktualizatsiya informatsii o lesnom uchastke s ispol’zovaniem snimkov so sputnikov i malykh BPLA (Development of the methodology to update the information on a forest area using satellite imagery and small UAVs), Issledovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 87–99.
  2. Lesnaya fitopatologiya (Forest phytopathology), B. P. Churakov (ed.), St. Petersburg: Izd. “Lan’”, 2012, 448 p.
  3. Melekhov I. S., Lesovedenie (Forest science), Moscow: Lesnaya promyshlennost’, 1980, 408 p.
  4. Metody monitoringa vreditelei i boleznei lesa (Methods for monitoring pests and diseases of forest), V. K. Kutuzov (ed.), Moscow: VNIILM, 2004, 200 p.
  5. Obydennikov V. I., Tibukov A. V., Lesovedenie (Forest science), Moscow: FGBOU VPO MGUL, 2013, 190 p.
  6. Poljakova E. V., Gofarov M. Ju., Vozmozhnosti podsputnikovogo distantsionnogo zondirovaniya nazemnykh uchastkov s ispol’zovaniem bespilotnogo letatel’nogo apparata CropCam (Possibilities or the undersatellite remote sounding of land sites with use of unmanned aerial vehicle CropCam), Issledovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 4, pp. 61–65.
  7. Rogozin M. V., Lesovedenie: metodicheskie ukazaniya (Forest science: guidelines), Perm: Izd. PGNIU, 2012, 36 p.
  8. Rukovodstvo pol’zovatelya Agisoft PhotoScan: Professional Edition, versiya 1.1. (User manual of Agisoft PhotoScan: Professional Edition, edition 1.1.), 2004, URL: http://www.agisoft.com/pdf/photoscan-pro_1_1_ru.pdf (accessed 15.04.2015).
  9. Tikhonov A. S., Lesovedenie (Forest science), Kaluga: GP “Oblizdat”, 2011, 332 p.
  10. Fundamentalnaya fitopatologiya (Fundamental phitopatology), Yu. T. Diakonov (ed.), Moscow: KRASAND, 2012, 512 p.
  11. Tsifrovaya fotogrammetricheskaya sistema Photomod: versiya 6.0. Rukovodstvo pol’zovatelya (Digital photogrammetry processing Photomod: edition 6.0. User manual), URL: http://www2.racurs.ru/download/ Racurs_brochures/PHOTOMOD.pdf (accessed 15.04.2015).
  12. Shevchenko S. V., Tsilyurik A. V., Lesnaya fitopatologiya (Forest phytopathology), Kiev: Vishcha shkola, 1986, 384 p.
  13. Arnold T., De Biasio M., Fritz A., Leitner R., UAV-based measurement of vegetation indices for environmental monitoring, 7th International Conference on Sensing Technology, 2013, pp. 704–707.
  14. Benavente D., Semi-expendable unmanned aerial vehicle for forest fire suppression, International Conference on Modelling, Monitoring and Management of Forest Fires II, 2010, Vol. 137, pp. 143–148.
  15. Dash J. P., Watt M. S., Pearse G. D., Heaphy M., Dungey H. S., Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak, ISPRS J. Photogrammetry and Remote Sensing, 2017, Vol. 131, pp. 1–14.
  16. Dong B., Feng Z.-K., Yao S., Wang J., Guo J.-C., Aerial-ground-space precision auto-measurement technology in stereo forest surveying, J. Beijing Forestry University, 2008, Vol. 30, pp. 173–177.
  17. Dunford R., Michel K., Gagnage M., Piégay H., Trémelo M.-L., Potential and constraints of Unmanned Aerial Vehicle technology for the characterization of Mediterranean riparian forest, Intern. J. Remote Sensing, 2009, Vol. 30(19), pp. 4915–4935.
  18. Getzin S., Nuske R. S., Wiegand K., Using Unmanned Aerial Vehicles (UAV) to Quantify Spatial Gap Patterns in Forests, Remote Sensing, 2014, Vol. 6, pp. 6988–7004.
  19. Gini R., Passoni D., Pinto L., Sona G., Use of unmanned aerial systems for multispectral survey and tree classification: A test in a park area of northern Italy, European J. Remote Sensing, 2014, Vol. 47(1), pp. 251–269.
  20. Heurich M., Ochs T., Andresen T., Schneider T., Object-orientated image analysis for the semi-automatic detection of dead trees following a spruce bark beetle (Ips typographus) outbreak, European J. Forest Research, 2010, Vol. 129(3), pp. 313–324.
  21. Inoue T., Nagai S., Yamashita S., Fadaei H., Ishii R., Okabe K., Taki H., Honda Y., Kajiwara K., Suzuki R., Unmanned aerial survey of fallen trees in a deciduous broadleaved forest in eastern Japan, PLoS ONE, 2014, Vol. 9 (10), pp. 1–7.
  22. Launchbury R., Unmanned aerial vehicles in forestry (Short Survey), Forestry Chronicle, 2014, Vol. 90(4), pp. 418–419.
  23. Lehmann J. R. K., Nieberding F., Prinz T., Knoth C., Analysis of unmanned aerial system-based CIR images in forestry ― a new perspective to monitor pest infestation levels, Forests, 2015, Vol. 6(3), pp. 594–612.
  24. Lisein J., Pierrot-Deseilligny M., Bonnet S., Lejeune P., A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial system imagery, Forests, 2013, Vol. 4(4), pp. 922–944.
  25. Merino L., Caballero F., Martínez-de-Dios J. R., Maza I., Ollero A., Automatic Forest Fire Monitoring and Measurement using Unmanned Aerial Vehicles, J. Intelligent and Robotic Systems, 2012, Vol. 65(1–4), pp. 533–548.
  26. Paneque-Gálvez J., McCall M. K., Napoletano B. M., Wich S. A., Koh L. P., Small drones for community-based forest monitoring: An assessment of their feasibility and potential in tropical areas, Forests, 2014, Vol. 5(6), pp. 1481–1507.
  27. Pierzchała M., Talbot B., Astrup R., Estimating soil displacement from timber extraction trails in steep terrain: Application of an unmanned aircraft for 3D modeling, Forests, 2014, Vol. 5(6), pp. 1212–1223.
  28. Salamí E., Barrado C., Pastor E., UAV flight experiments applied to the remote sensing of vegetated areas, Remote Sensing, 2014, Vol. 6(11), pp. 11051–11081.
  29. Sarkar S. K., Das J., Ehsani R., Kumar V., Towards autonomous phytopathology: Outcomes and challenges of citrus greening disease detection through close-range remote sensing, Proc. IEEE International Conference on Robotics and Automation, 2016, pp. 5143–5148.
  30. Schreyer J., Lakes T., Remote sensing-based approaches for modeling 3D vegetation information in urban areas, 14th International Conference on Computational Science and Its Applications, ICCSA, 2014, pp. 116–120.
  31. Von Wahl N., Heinen S., Essen H., Kruell W., Tobera R., Willms I., An integrated approach for early forest fire detection and verification using optical smoke, gas and microwave sensors, International Conference on Modelling, Monitoring and Management of Forest Fires II, 2010, Vol. 137, pp. 97–106.