ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 184-192

Regional bio-optical algorithm for Gorky Reservoir: first results

E.N. Korchemkina 1 , A.A. Molkov 2 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
2 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
Accepted: 29.01.2018
DOI: 10.21046/2070-7401-2018-15-3-184-192
Determination of natural impurities concentrations in freshwater from satellite data requires solving a number of problems, one of which is the creation of a regional bio-optical algorithm. Such research is active for open seas and oceans, as well as for coastal marine areas. In this paper, we propose to adapt the existing semi-analytical algorithm for the Black Sea (Lee et al., 2015) to the fresh eutrophic waters of the Gorky Reservoir. The algorithm uses spectral reflectance data and allows calculating the concentrations of optically significant impurities (chlorophyll a, dissolved organic matter and mineral suspension).
The results of adaptation of optical models for absorption by nonliving organics and phytoplankton pigments to bio-optical features of the investigated reservoir are presented. For this purpose, the data of field observations and literature sources were used. On their basis, the spectral features of absorption and spectral ranges with dominant optical properties of each water component were obtained. This approach allowed achieving positive results in terms of speed and accuracy.
Approbation of the algorithm and verification of the results were performed using in situ measurements of spectral reflectance coefficient of water column and the results of a laboratory analysis of water samples for the content of optically active impurities.
Keywords: Gorky Reservoir, eutrophic reservoirs, water reflectance coefficient, bio-optical model, regional semi-analytical algorithm, chlorophyll a, mineral suspension, DOM
Full text

References:

  1. Kopelevich O. V., Burenkov V. I., Sheberstov S. V., Razrabotka i ispol’zovaniye regional’nykh algoritmov dlya rascheta bioopticheskikh kharakteristik morey Rossii po dannym sputnikovykh skanerov tsveta (Development and use of regional algorithms for calculating the bio-optical characteristics of Russian seas from satellite color data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2006, Vol. 2, pp. 99–105.
  2. Korchemkina E. N., Lee M. E., Anomal’nye opticheskie kharakteristiki pribrezhnykh vod Chernogo morya v iyule 2012 g. i ikh svyaz’ s kontsentratsiei mineral’noi vzvesi v vode (Anomalous optical characteristics of the coastal waters of the Black Sea in July 2012 and their relationship to the suspended matter concentration in water), Fundamentalnaya i prikladnaya gidrofizika, 2015, Vol. 10, No. 1, pp. 39–43.
  3. Lavrova O. Yu., Solov’ev D. M., Strochkov A. Ya., Shendrik B. D., Sputnikovyi monitoring intensivnogo tsveteniya vodoroslei v Rybinskom vodokhranilishche (Satellite monitoring of intensive algae blooms in the Rybinsk Reservoir), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 3, pp. 54–72.
  4. Lee M. E., Martynov O. V., Izmeritel’ koeffitsiyentov yarkosti dlya podsputnikovykh izmerenii bioopticheskikh parametrov vod (Reflectance meter for sub-satellite measurements of bio-optical parameters of water), Ekologicheskaya bezopasnost’ pribrezhnoi i shel’fovoi zon i kompleksnoye ispol’zovanie resursov shel’fa, Sevastopol: MHI NASU, 2000, pp. 163–173.
  5. Lee M. E., Shybanov E. B., Korchemkina E. N., Martynov O. V., Opredelenie kontsentratsii primesei v morskoi vode po spektru yarkosti voskhodyashchego izlucheniya (Determination of the concentration of impurities in sea water from the spectrum of downwelling radiation), Morskoi gidrofizicheskii zhurnal, 2015, No. 6, pp. 17–33.
  6. Man’kovsky B. I., Osnovy optiki okeana (Fundamentals of ocean optics), Sevastopol: MHI NASU, 1996, 119 p.
  7. Shybanov E. B., Chislennyi metod resheniya uravneniya perenosa. Koeffitsienty otrazheniya i propuskaniya opticheski tonkogo ploskoparallel’nogo sloya (A numerical method for solving the radiation transport equation. Reflection and transmission coefficients of an optically thin plane-parallel layer), Morskoi gidrofizicheskii zhurnal, 2005, No. 3, pp. 62–71.
  8. Kutser T., Passive optical remote sensing of cyanobacteria and other intense phytoplankton blooms in coastal and inland waters, Int. J. Remote Sens., 2009, Vol. 30, pp. 4401–4425.
  9. Mishra D. R., Ogashawara I., Gitelson A. A., Bio-optical Modeling and Remote Sensing of Inland Waters, Elsevier, 2017, 324 p.
  10. Morel A., Prieur L., Analysis of variations in ocean color, Limnol. Oceanogr., 1977, Vol. 22, pp. 709–722.
  11. Odermatt D., Gitelson A., Brando V. E., Schaepman M., Review of constituent retrieval in optically deep and complex waters from satellite imagery, Remote Sensing of Environment, 2012, Vol. 118, pp. 116–126.
  12. Paavel B., Kangro K., Arst H., Reinart A., Kutser T., Noges T., Parameterization of chlorophyll-specific phytoplankton absorption coefficients for productive lake waters, J. Limnol., 2016, Vol. 75, No. 3, pp. 423–438.
  13. Pope R. M., Fry E. S., Absorption spectrum 380–700 nm of pure water. II. Integrating cavity measurements, Appl. Opt., 1997, Vol. 36, No. 33, pp. 8710–8723.
  14. Stæhr P. A., Markager S., Parameterization of the chlorophyll-a specific in vivo light absorption coefficient covering estuarine, coastal and oceanic waters, Int. J. Remote Sens., 2004, Vol. 25, No. 22, pp. 5117–5130.