ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 217-225

Phosphorus and silicon as markers of dust aerosol transfer over the Black Sea region

D.V. Kalinskaya 1 , A.V. Varenik 1 , H.S. Papkova 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 17.05.2018
DOI: 10.21046/2070-7401-2018-15-3-217-225
The analysis of data on the content of PO43– and SiO3 in atmospheric precipitation samples collected in the Crimean coast is represented. With extreme values of the main optical characteristics of the aerosol (high values of aerosol optical thickness (AOT) and low values of Angstrom parameter), an increase in the concentrations of PO43– and SiO3 contents is observed. As a result, it was determined that the concentration of phosphorus and silicon in recording the transfer of dust aerosol to the investigated region could increase by more than 10 times. The analysis of AOT, the backward trajectory data of the BTA (Back Trajectory Analysis) based on the results of the AERONET (Aerosol Robotic Network) models and the HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory model) confirmed that on days when concentrations of PO43– and SiO3 exceeded the annual average the value is more than 10 times, in 100 % of cases, the transfer of dust aerosol from the Sahara and the Syrian deserts was recorded. Probability of increasing the manifestation of respiratory diseases in humans on days characterized by such dust transfer is high. In this case, fine aerosol fractions have a negative impact on people with cardiopulmonary diseases. The elevation of a large amount of dust aerosol by strong ascending currents promotes the transfer of microbiota and minerals, including elevated phosphorus and silicon contents, over considerable distances.
Keywords: phosphorus, silicon, atmospheric aerosol, AERONET, HYSPLIT
Full text


  1. Eremina I. D., Monitoring khimicheskogo sostava atmosfernykh osadkov po nablyudeniyam meteorologicheskoi observatorii MGU (Monitoring chemical composition of atmospheric precipitation according to observations in meteorological observatory of Moscow State University), Al’ternativnaya energetika i ekologiya, 2013, Vol. 6, No. 2, pp. 80–87.
  2. Kalinskaya D. V., Issledovanie osobennostei opticheskikh kharakteristik pylevogo aerozolya nad Chernym morem (A research of features of optical characteristics of a dust aerosol over the Black Sea), Ekologіchna bezpeka priberezhnoї ta shelfovoї zon ta kompleksne vikoristannya resursіv shelfu, 2012, Vol. 26, No. 2, pp. 151–162.
  3. Kondrat’ev K. Ya., Moskalenko N. I., Pozdnyakov D. V., Atmosfernyi aerozol’ (Atmospherical aerosol), Leningrad: Gidrometeoizdat, 1983, 224 p.
  4. Fuks N. A., Mekhanika aerozolei (Mechanics of aerosols), Moscow: AN USSR, 1955, 181 p.
  5. Koren I., Kaufman Y., Washington R., Todd M., Rudich Y., Martins V., Rosenfeld D., The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest, Environmental Research Letters, IOP Publishing Ltd, 2006, Vol. 1, No. 1, pp. 1–5.
  6. Mahowald N. M., Jickells T. D., Baker A. R., Artaxo P., Benitez-Nelson C. R., Bergametti G., Bond T. C., Chen Y., Cohen D. D., Herut B., Kubilay N., Losno R., Luo C., Maenhaut W., Mcgee K. A., Okin G. S., Siefert R. L., Tsukuda S., Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts, Global Biogeochemical Cycles, 2008, Vol. 22, Issue 4, pp. GB4026.
  7. Migon C., Sandroni V., Phosphorus in rainwater: partitioning, inputs and impact on the surface coastal ocean, Limnology and Oceanography, 1999, Vol. 44, pp. 1160–1165.
  8. Ridgwell A., Watson A., Feedback between aeolian dust, climate, and atmospheric CO2 in glacial time, Paleoceanography, 2002, Vol. 17, No. 4, p. 1059, DOI: 10.1029/2001PA000729.