ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 9-17

Integration of space images of ultra high and medium resolution for the construction of size-distribution histograms of thermokarst lakes in the extended range of their sizes

Yu.M. Polishchuk 1, 2 , A.N. Bogdanov 1 , N.A. Bryksina 3 , I.N. Muratov 4 , V.Yu. Polishchuk 5, 6 
1 Ugra Research Institute of Information Technologies, Khanty-Mansiysk, Russia
2 Institute of Petroleum Chemistry SB RAS, Tomsk, Russia
3 Immanuel Kant Baltic Federal University, Kaliningrad, Russia
4 Ugra Research Institute of Information Technology, Khanty-Mansiysk, Russia
5 Institute of Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, Russia
6 Tomsk Polytechnic University, Tomsk, Russia
Accepted: 04.04.2018
DOI: 10.21046/2070-7401-2018-15-3-9-17
The article is devoted to the use of ultra-high resolution imagery in combination with mid-resolution imagery for constructing a histogram of the size-distribution of lakes from empirical histograms presented in a very wide range of lake areas, including small and very small lakes. Methodological issues of synthesizing two histograms for the size-distribution of lakes are considered, one of which is obtained from ultra high resolution imagery on a limited set of test sites, the other — on a mosaic of images of the middle resolution of the study area. To build the histograms, we used images of the middle resolution Landsat-8 and ultra high resolution Resource-P, QuickBird and GeoEye-1, reflecting the distributions of small and very small lakes. Remote studies using ultra high resolution imagery were carried out on 37 test sites, located evenly enough in the territory of the cryolithozone of Western Siberia. A histogram of the size-distribution of lakes by areas in a very wide range of sizes from 5 m2 to 20,000 hectares has been synthesized.
Keywords: permafrost, geoinformation systems, space images, histograms of lakes areas distribution, lognormal distribution law
Full text

References:

  1. Bryksina N. A., Polishchuk Yu. M., Issledovanie tochnosti distantsionnogo izmereniya ploshchadei ozer s ispol’zovaniem kosmicheskikh snimkov (Research of remote measurement accuracy of lake areas using space images), Geoinformatika, 2013, No. 1, pp. 64–68.
  2. Viktorov A. S., Osnovnye problemy matematicheskoy morfologii landshafta (Key issues of landscape mathematical morphology), Moscow: Nauka, 2006, 252 p.
  3. Viktorov A. S., Kapralova V. N., Trapeznikova O. N., Matematicheskaya model’ morfologicheskoi struktury ozerno-termokarstovykh ravnin v izmenyayushchikhsya klimaticheskikh usloviyakh (Mathematical model of the lacustrine-thermokarst plain morphostructure under the changing climatic conditions), Kriosfera Zemli, 2015, Vol. 19, No. 2, pp. 26–34.
  4. Kravtsova V. I., Bystrova A. G., Izmenenie razmerov termokarstovykh ozer v razlichnykh raionakh Rossii za poslednie 30 let (Changes in thermokarst lake size in different regions of Russia for the last 30 years), Kriosfera Zemli, 2009, Vol. 13, No. 2, pp. 16–26.
  5. Polishchuk Yu. M., Bogdanov A. N., Zony aktivnogo termokarsta na territorii mnogoletnei merzloty i ikh vyyavlenie po kosmicheskim snimkam (Active thermokarst zones on permafrost territory and their detecting on space images), Izvestiya Tomskogo politekhnicheskogo universiteta, 2015, Vol. 326, No. 12, pp. 104–114.
  6. Polishchuk Yu. M., Bryksina N. A., Polishchuk V. Yu., Distantsionnyi analiz izmeneniya chisla i raspredeleniya po razmeram malykh termokarstovykh ozer kriolitozony Zapadnoi Sibiri (Remote analysis of changes in the number and distribution of small thermokarst lakes by sizes in cryolithozone of Western Siberia), Issledovanie Zemli iz kosmosa, 2015, No. 3, pp. 34–42.
  7. Polishchuk Yu. M., Polishchuk V. Yu., Bryksina N. A., Pokrovskiy O. S., Kirpotin S. N., Shirokova L. S., Metodicheskie voprosy otsenki zapasov metana v malykh termokarstovykh ozerakh v zone merzloty Zapadnoi Sibiri (Methodical issues of evaluating methane capacity in small thermokarst lakes of Western Siberia permafrost), Izvestiya Tomskogo politekhnicheskogo universiteta, 2015, Vol. 326, No. 2, pp. 127–135.
  8. Polishchuk Yu. M., Bogdanov A. N., Muratov I. N., Metodicheskie voprosy postroeniya obobshchennykh gistogramm raspredeleniya ploshchadei ozer v zone merzloty na osnove kosmicheskikh snimkov srednego i vysokogo razresheniya (Methodological issues of construction of generalized histograms of lake size-distribution in the permafrost based on the satellite images of middle and high resolution), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 6, pp. 224–232.
  9. Polishchuk Yu. M., Muratov I. N., Polishchuk V. Yu., Issledovanie polei malykh termokarstovykh ozer v zone sploshnoi merzloty Zapadnoi Sibiri po sputnikovym snimkam vysokogo razresheniya (Studying the fields of small thermokarst lakes in the continuous permafrost of Western Siberia by high resolution satellite images), Optika atmosfery i okeana, 2016, Vol. 29. No. 7. pp. 592–597.
  10. Downing J. A., Prairie Y. T., The global abundance and size distribution of lakes, ponds, and impoundments, Limnol. Oceanogr., 2006, Vol. 51, pp. 2388–2397.
  11. Holgerson M. A., Raymond P. A., Large contribution to inland water CO2 and CH4 emissions from very small ponds, Nature Geoscience Letters, 2016, Vol. 9, pp. 222–226.
  12. Lehner B., Doll P., Development and validation of a global database of lakes, reservoirs and wetlands, J. Hydrol., 2004, Vol. 296, pp. 1–22.
  13. Pokrovsky O. S., Shirokova L. S., Kirpotin S. N., Audry S., Viers J., Dupre B., Effect of permafrost thawing on the organic carbon and metal speciation in thermokarst lakes of Western Siberia, Biogeosciences, 2011, Vol. 8, pp. 565–583.