ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 2, pp. 213-224

Mesoscale convective systems forecast using global and mesoscale atmospheric models

A.V. Bykov 1 , A.N. Shikhov 1 
1 Perm State University, Perm, Russia
Accepted: 07.03.2018
DOI: 10.21046/2070-7401-2018-15-2-213-224
The article is devoted to the evaluation of forecast of mesoscale convective systems (MCS) with hazardous weather events (squalls, large hail and heavy rainfall) according to the global and mesoscale atmospheric models data. Two approaches are implemented to perform this evaluation. They are the forecast based on the instability indices calculated from the GFS and SLAV global atmospheric models output, and explicit (cloud-resolving) modeling of the deep convection using WRF-ARW and WRF-NMM mesoscale models. New instability index is developed for MCS forecast on the global atmospheric models output data. This index is based on the Lifted Index (LI) modification. Terra/Aqua MODIS satellite images and ground-based weather station data are used to estimate the reliability of MCS and hazardous weather events forecasts respectively. It is shown, that the SLAV model forecasts are more reliable in comparison with GFS forecasts, according to comparison of simulated areas of maximum convective instability with satellite-observed MCS position. The estimation of the cloud-resolving MCS forecasts by the WRF-ARW and WRF-NMM models shows that the simulated MCS spatial position often did not coincide with the MODIS-observed position. This could be associated with errors in initial conditions (GFS forecast data). Besides, the WRF model does not reproduce the MCS which were formed in the absence of a dynamic (frontal) convection. It should be noted that WRF-NMM model significantly overestimates the convective precipitation intensity and the areas with heavy showers (≥ 30 mm/h). Because of this, the amount of correct forecasts is increasing; however, the commission error is also rising.
Keywords: global atmospheric models, mesoscale atmospheric models, MODIS data, severe weather events, mesoscale convective systems, Perm krai
Full text

References:

  1. Bykov A. V., Vetrov A. L., Kalinin N. A., Prognoz opasnykh konvektivnykh yavlenii v Permskom krae s ispol’zovaniem global’nykh prognosticheskikh modelei (Forecast of hazardous convective events in the Perm Krai using global forecast models), Trudy Gidromettsentra Rossii, 2017, Vol. 363, pp. 101‒119.
  2. Vel’tishchev N. F., Stepanenko V. M., Mezometeorologicheskie protsessy (Mesoscale meteorological processes), Moscow, 2006, 101 p.
  3. Vel’tishchev N. F., Zhupanov V. D., Chislennye prognozy pogody po negidrostaticheskim modelyam obshchego pol’zovaniya WRF-ARW i WRF-NMM (Numerical weather forecasts by non-hydrostatic open-source models WRF-ARW and WRF-NMM), In: 80 let Gidromettsentru Rossii (80 years to the Hydrometeorological Center of Russia), 2010, pp. 94‒135.
  4. Vel’tishchev N. F., Zhupanov  V. D., Pavlyukov Yu. B., Kratkosrochnyi prognoz sil’nykh osadkov i vetra s pomoshch’yu razreshayushchikh konvektsiyu modelei WRF (Short-range forecast of heavy precipitation and strong wind using the convection-allowing WRF models), Meteorologiya i gidrologiya, 2011, No. 1, pp. 5–18.
  5. Gubenko I. M., Rubinshtein K. G., Analiz rezul’tatov rascheta grozovoi aktivnosti s pomoshch’yu indeksov neustoichivosti atmosfery po dannym chislennoi modeli WRF-ARW (Analysis of the results of thunderstorm forecasting based on atmospheric instability indices using the WRF-ARW numerical model data), Meteorologiya i gidrologiya, 2015, No. 1, pp. 27–37.
  6. Rukovodstvo po proizvodstvu nablyudenii i primeneniyu informatsii s neavtomatizirovannykh radiolokatorov MRL-1, MRL-2, MRL-5 (Manual for the production of observations and the application of information from non-automated radars MRL-1, MRL-2 and MRL-5), Saint Petersburg: Gidrometeoizdat, 1993, 264 p.
  7. Shikhov A. N., Bykov A. V., Otsenka kachestva prognoza mezomasshtabnykh konvektivnykh sistem na Zapadnom Urale s pomoshch’yu modeli WRF i sputnikovykh dannykh MODIS (Assessment of forecast quality of mesoscale convective systems in Western Urals region using WRF model and MODIS satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 1, pp. 137‒148.
  8. Tolstykh M. A., Shashkin V. V., Fadeev R. Yu., Shlyaeva A. V., Mizyak V. G., Rogutov V. S., Bogoslov­skii N. N., Goiman G. S., Makhnorylova S. V., Yurova A. Yu., Sistema modelirovaniya atmosfery dlya bes­shovnogo prognoza (The atmospheric modeling system for coupled forecast), Moscow: Triada-LTD, 2017, 166 p.
  9. Davis C. A., Brown B., Bullock R., Object-based verification of precipitation forecasts. Part I: Application to convective rain systems, Monthly Weather Review, 2006, Vol. 134(7), pp. 1785‒1795.
  10. Kalinin N. A., Shikhov A. N., Bykov A. V., Forecasting mesoscale convective systems in the Urals using the WRF model and remote sensing data, Russian Meteorology and Hydrology, 2017, Vol. 42, Issue 1, pp. 9‒18.
  11. Skamarock W., Klemp J., Dudhia J., Gill D., Barker D., Duda M. G., Huang X.-Y., Wang W., Powers J. G., A description of the Advanced Research WRF Version 3, NCAR Technical Note -475+STR, National Center for Atmospheric Research Boulder, Colorado, USA, 2008, 113 p.
  12. Tolstykh M. A., Volodin E. M., Kostrykin S. V., Fadeev R. Y., Shashkin V. V., Bogoslovskii N. N., Vilfand R. M., Kiktev D. B., Krasjuk T. V., Mizyak V. G., Shlyaeva A. V., Geleyn J.-F., Ezau I. N., Yurova A. Y., Development of the multiscale version of the SL-AV global atmosphere model, Russian Meteorology and Hydrology, 2015, Vol. 40, Issue 6, pp. 374‒382.