ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 2, pp. 235-250

Simulation of satellite microwave radiometric information used to reconstruct three-dimensional fields of atmospheric parameters

V.P. Savorskiy 1, 2 , A.B. Akvilonova 1 , D.M. Ermakov 1, 2 , I.N. Kibardina 1 , O.Yu. Panova 1 , M.T. Smirnov 1 , S.Y. Turygin 3 , A.P. Chernushich 1 
1 V. A. Kotelnokov Institute of Radioengineering and Electronics RAS, Fryazino Branch, Fryazino, Russia
2 Space Research Institute RAS, Moscow, Russia
3 Special Design Bureau of the V. A. Kotelnokov Institute of Radioengineering and Electronics RAS, Fryazino, Russia
Accepted: 03.04.2018
DOI: 10.21046/2070-7401-2018-15-2-235-250
The development of tools to enable control of temperature and humidity characteristics of the atmosphere remains one of the most urgent tasks of satellite monitoring of the Earth. One of the most promising areas for the development of these facilities is the use of microwave radiometric satellite surveillance instruments. This is primarily due to the possibilities arising from the creation of microwave radiometric hyperspectrometers that allow recording the continuous high-resolution spectra of microwave radiation from the “atmosphere-underlying surface” system in the range of 10−200 GHz. With this approach, the selection and configuration of the channels of the microwave radiometric system is a critical task, and its solution must be ensured already at the stage of designing and creating microwave radiometric equipment. That is why the successful implementation of development projects of microwave radiometric hyper-spectrometer requires the creation of special simulation software that would enable the researchers to solve the following project tasks: choosing the optimal technical solutions, checking them in the testing process and providing a basis for solving inverse problems in the subsequent thematic analysis of the experimental data. The paper presents a methodology for the development of software for modeling the microwave radiometric measurements of «atmosphere-underlying surface» system radiation, describes software which implements modeling procedures, and shows examples of the usage of these procedures for statistical description of atmosphere profiles.
Keywords: software, radiobrightness temperature, weather forecast, humidity profile, temperature profile
Full text

References:

  1. Zuyev V. Ye., Komarov V. S., Statisticheskiye modeli temperatury i gazovykh komponent atmosfery (Statistical models of temperature and gas components of the atmosphere), Leningrad: Gidrometeoizdat, 1986, 264 p.
  2. Aires F., Prigent C., Orlandi E., Milz M., Eriksson P., Crewell S., Lin C.-C., Kangas V., Microwave hyperspectral measurements for temperature and humidity atmospheric profiling from satellite: The clear-sky case, J. Geophys. Res. Atmos., 2015, Vol. 120, pp. 11334–11351.
  3. Blackwell W. J., Leslie V. R., Pieper M. L., Samra J. E., All-Weather Hyperspectral Atmospheric Sounding, Lincoln Laboratory J., 2010, Vol. 18, No. 2, pp. 28–47.
  4. Blackwell W. J., Bickmeier L. J., Leslie R. V., Pieper M. L., Samra J. E., Surussavadee C., Upham C. A., Hyperspectral microwave atmospheric sounding, IEEE Trans. Geosci. Remote Sens., 2011, Vol. 49, No. 1, pp. 128–142.
  5. Borbas E. E., Seemann S. W., Huang H.-L., Li J., Menzel W. P., Global profile training database for sate­llite regression retrievals with estimates of skin temperature and emissivity, Proc. XIV Int. ATOVS Study Conf., Beijing, China, CIMSS, University of Wisconsin-Madison, 2005, pp. 763–770.
  6. Boukabara S. A., Garret K., Benefits of a hyperspectral microwave sensor, IEEE Sensors Proceedings, 2011, pp. 1881–1884.
  7. Buehler S. A., Eriksson P., Kuhn T., von Engeln A., Verdes C., ARTS, the atmospheric radiative transfer simulator, J. Quant. Spectrosc. Radiat. Transfer, 2005, Vol. 91, pp. 65–93.
  8. Cardinali C., Monitoring the observation impact on the shortrange forecast, Quarterly J. Royal Meteorol. Society, 2009, Vol. 135, pp. 239–250.
  9. Chevallier F., Di Michele S., McNally A. P., Diverse profile datasets from the ECMWF 91-level short-range forecasts. NWP SAF Satellite Application Facility for Numerical Weather Prediction. Report NWPSAF-EC-TR-010, 2006, 14 p.
  10. Clough S. A., Kneizys F. X., Davis R. W., Line shape and water vapor continuum, Atmos Res., 1989, Vol. 23, pp. 229–241.
  11. Eriksson P., Buehler S. A., Davis C. P., Emde C., Lemke O., ARTS, the atmospheric radiative transfer simulator, version 2, J. Quantitative Spectroscopy and Radiative Transfer, 2011, Vol. 112, No. 10, pp. 1551–1558.
  12. Lipton A. E., Satellite sounding channel optimization in the microwave spectrum, IEEE Trans. Geosci. Remote Sens., 2003, Vol. 41, No. 4, pp. 761–781.
  13. McClatchey R. A., Fenn R. W., Selby J. E. A., Volz F. E., Garing J. S., Optical properties of the atmosphere, Report AFCRL-72-0497, 1972, 108 p.
  14. Rodgers C. D., Information content and optimization of high spectral resolution measurements, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, In: P. B. Hays, J. Wang (eds.), Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II. Proc. SPIE., Vol. 2830, Bellingham, WA: SPIE, 1996, pp. 136–147.
  15. Rodgers C. D., Inverse Methods for Atmospheric Sounding: Theory and Practice, Singapore, London: World Scientific Publishing, 2000, 253 p.
  16. Rothman L. S., Gordon I. E., Babikov Y., Barbe A., Chris Benner D., Bernath P. F., Birk M., Bizzocchi L., Boudon V., Brown L. R., Campargue A., Chance K., Cohen E. A., Coudert L. H., Devi V. M., Drouin B. J., Fayt A., Flaud J.-M., Gamache R. R., Harrison J. J., Hartmann J.-M., Hill C., Hodges J. T., Jacquemart D., Jolly A., Lamouroux J., Le Roy R. J., Li G., Long D. A., Lyulin O. M., Mackie C. J., Massie S. T., Mikhailenko S., Müller H. S. P., Naumenko O. V., Nikitin A. V., Orphal J., Perevalov V., Perrin A., Polovtseva E. R., Richard C., Smith M. A. H., Starikova E., Sung K., Tashkun S., Tennyson J., Toon G. C., Tyuterev Vl. G., Wagner G., The HITRAN2012 molecular spectroscopic database, J. Quantitative Spectroscopy & Radiative Transfer, 2013, Vol. 130, pp. 4–50.
  17. U. S. Standard Atmosphere, US, Washington D. C.: U. S. Government Printing Office, 1976, 241 p.