ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 2, pp. 137-143

Reasons for long-term dynamics of NDVI (MODIS) averaged for arable lands of municipalities of Belgorod region

I.Yu. Savin 1, 2 , Yu. G. Chendev 3 
1 V. V. Dokuchaev Soil Science Institute, Moscow, Russia
2 Agrarian-Technological Institute RUDN, Moscow, Russia
3 Belgorod State University, Belgorod, Россия
Accepted: 15.01.2018
DOI: 10.21046/2070-7401-2018-15-2-137-143
One of the basic products of the Internet service VEGA is the cartograms of the vegetative index NDVI (MODIS) averaged for arable land of municipalities of Russia, updated weekly. The article presents the results of analysis of its long-term dynamics for the period of 2001−2016 for the municipalities of Belgorod Region. The main causes of the observed dynamics are analyzed. It was found that the most significant factors are the changes in crops acreage and the climatic conditions of the growing season. The date of the first NDVI value at the start of the season correlates well with air temperature data. But the trend of this indicator for the period of research (2001−2017) on the territory of the region is not revealed. An indistinct 5−7 years periodicity of local minima and maximums of this indicator is observed. Dynamics of crops acreage has stronger effect on the date of seasonal NDVI maximum than trends of weather conditions (which act towards the onset of an earlier peak in the growing season). It leads, albeit to a weak, but increasingly later NDVI seasonal peak date in the second half of the analyzed period. The main factor of the dynamics of the magnitude of the seasonal NDVI maximum in Belgorod Region is dynamics of the cropping rotations, the combination of crop yields and acreage. The received data should be taken into account when using the Internet service VEGA for operative monitoring of crops.
Keywords: satellite monitoring, crop recognition, MODIS, NDVI, Belgorod Region
Full text


  1. Kayumov M. K., Programmirovanie produktivnosti polevykh kul’tur. Spravochnik (Programming of productivity of field crop. Reference book), Moscow: Rosagropromizdat, 1989, 368 p.
  2. Loupian E. A., Bartalev S. A., Savin I. Yu., Tekhnologii sputnikovogo monitoringa v sel’skom khozyaistve Rossii (Satellite monitoring technologies in agriculture of Russia), Aerokosmicheskii kur’er, 2009, No. 6, pp. 47−49.
  3. Loupian E. A., Savin I. Yu., Bartalev S. A., Tolpin V. A., Balashov I. V., Plotnikov D. E., Sputnikovyi servis monitoringa sostoyaniya rastitel’nosti “VEGA” (Satellite service for monitoring of status of vegetation “VEGA”), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 1, pp. 190−198.
  4. Savin I. Yu., Sovremennyi sputnikovyi monitoring pochv i posevov: dostizheniya i problemy (Modern satellite monitoring of soils and crops: achievements and problems), In: Primenenie sredstv distantsionnogo zondirovaniya Zemli v sel’skom khozyaistve (Application of remote sensing measures in agriculture), St. Petersburg: AFI, 2015, pp. 29−32.
  5. Savin I. Yu., Vrieling A., Analiz mnogoletnei dinamiki rastitel’nykh resursov na territorii Rossii po dannym NOAA AVHRR (Analysis of long-term dynamics of vegetative resources in Russia based on NOAA AVHRR data), Issledovanie Zemli iz kosmosa, 2008, No. 5, pp. 74−82.
  6. Savin I. Yu., Dokukin P. A., Vernyuk Yu. I., Zhogolev A. V., O vliyanii zasorennosti na NDVI posevov yarovogo yachmenya, opredelyaemyi po sputnikovym dannym MODIS (About influence of weedness on spring barley NDVI, detected based on MODIS data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 185−195.
  7. Tolpin V. A., Balashov I. V., Savin I. Yu., Loupian E. A., Sputnikovyi servis “VEGA” (Satellite service “VEGA”), Zemlya iz kosmosa: naibolee effektivnye resheniya, 2011, No. 9, pp. 32−37.
  8. Atzberger C., Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs, Remote Sensing, 2013, Vol. 5, pp. 949−981.
  9. Corgne S., Hubert-Moy L., Betbeder J., Monitoring of Agricultural Landscapes Using Remote Sensing Data, In: Land Surface Remote Sensing in Agriculture and Forest, 2016, pp. 221–247.
  10. Eerens H., Haesen D., Rembold F., Urbano F., Tote C., Bydekerke L., Image time series processing for agriculture monitoring, Environmental Modelling and Software, 2014, Vol. 53, pp. 154–162.
  11. Rembold F., Atzberger C., Savin I., Rojas O., Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection, Remote Sensing, 2013, Vol. 5, No. 4, pp. 1704–1733.
  12. Savin I., Crop yield prediction with SPOT VGT in Mediterranean and central Asian countries, ISPRS Archives XXXVI-8/W48 Workshop Proceedings: Remote sensing support to crop yield forecast and area estimates. Commission VIII, WG VIII/10, Stresa: OPOCE, 2007, pp. 130–134.
  13. Silveira M. J., Thiébaut G., Impact of climate warming on plant growth varied according to the season, Limnologica ― Ecology and Management of Inland Waters, 2017, Vol. 65, pp. 4–9.
  14. Xu H. J., Wang X. P., Yang T. B., Trend shifts in satellite-derived vegetation growth in Central Eurasia, 1982–2013, Science of The Total Environment, 2017, Vol. 579, pp. 1658–1674.