ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 75-85

Optical system of a prospective imaging spectrometer for mapping ozone and other gases in Earth’s atmosphere

Yu.S. Dobrolenskiy 1 , I.A. Dzuban 1 , Yu.S. Ivanov 2 , I.I. Syniavskyi 2 , D.V. Ionov 3 , A.V. Poberovsky 3 , O.I. Korablev 1 , A.A. Fedorova 1 , N.A. Vyazovetskiy 1 
1 Space Research Institute RAS, Moscow, Russia
2 Main Astronomical Observatory NASU, Kyiv, Ukraine
3 Saint Petersburg State University, St. Petersburg, Russia
Accepted: 08.12.2017
DOI: 10.21046/2070-7401-2018-15-1-75-85
In the paper, the concept of a new prospective Russian spectrometer intended for Earth atmosphere monitoring in the visible and near-UV spectral ranges from board of a spacecraft is presented. The goal of the instrument is to measure total ozone and other gases in the vertical column of the atmosphere. Its wide field of view (100°) makes it possible to provide global mapping of measured components of the atmosphere every day. So far the optical modeling of the whole instrument as well as its units has been done. In this paper, the optical design of the spectrometer is presented in details. The instrument consists of an entrance unit, two spectral channels and calibration unit. The modeling results of the image of entrance slit on the detector are demonstrated. They confirm the characteristics specified: spectral resolution 0.3 nm in the range 0.3–0.4 μm and 0.5 nm in the range 0.4–0.8 μm. Spatial resolution is approximately equal to 0.5° in both channels, which corresponds to a resolvable element about 6 km near Earth surface when measuring at nadir direction from the altitude of 700 km.
Keywords: ozone monitoring, orbital instrument, imaging spectrometer, optical design, objective, diffraction grating, UV-visible light
Full text


  1. Dobrolenskii Yu. S., Ionov D. V., Korablev O. I., Fedorova A. A., Zherebtsov E. A., Shatalov A. E., Poberovskii A. V., Nazemnye polevye izmereniya i kalibrovki novogo sputnikovogo spektrometra dlya monitoringa ozonovogo sloya Zemli (Ground-based field measurements and calibrations of the new satellite spectrometer for Earth ozone layer monitoring), Issledovanie Zemli iz kosmosa, 2017, No. 5, pp. 82–92.
  2. IvanovYu. S., SinyavskiiI. I., Dispergiruyushchaya sistema spektropolyarimetra s kvazilineinym khromatizmom (Dispersive system of a spectral polarimeter with quasi-linear chromatism), Opticheskii zhurnal, 2005, Vol. 72, No. 7, pp. 48–51.
  3. LebedevaV. V., Eksperimental’naya optika (Experimental Optics), Moscow: Fizicheskii fakul’tet MGU im. M. V.Lomonosova, 2005, 282 p.
  4. PeisakhsonI. V., Optika spektral’nykh priborov (Optics of spectral instruments), Leningrad: Mashinostroe­nie, 1975, 312 p.
  5. Bertaux J.-L., Korablev O. I., Perrier. S., Quemerais E., Montmessin F., Leblanc F., Lebonnois S., Ran­nou P., Lefevre F., Forget F., Fedorova A. A., Dimarellis E., Reberac A., Fonteyn D., Chaufray J. Y., Gui­bert S., SPICAM on Mars Express: Observing modes and overview of UV spectrometer data and scientific results, J. Geophys. Res., 2006, Vol. 111, No. E10S90, pp. 1–40.
  6. Bertaux J.–L., Nevejans D., Korablev O. I., Villard E., Quemerais E., Neefs E., Montmessin F., Leblanc F., Dubois J. P., Dimarellis E., Hauchecorne A., Lefevre F., Rannou P., Chaufray J. Y., Cabane M., Cernogora G., Souchon G., Semelin F., Reberac A., vanRansbeek E., Berkenbosch S., Clairquin R., Muller C., Forget F., Hourdin F., Talagrand O., Rodin A., Fedorova A. A., Stepanov A. V., Vinogradov I. I., Kiselev A. V., Kalinnikov Y. K., Durry G., Sandel B., Stern A., Gerard J. C., SPICAV/SOIR on Venus Express: Three spectrometers to study the global structure and composition of the Venus atmosphere, Planet. Space Sci., 2007, Vol. 55, pp. 1653–1672.
  7. Bovensmann H., Burrows J. P., Buchwitz M., Frerick J., Noel S., Rozanov V. V., Chance K. V., Goede A. P. H., SCIAMACHY: Mission objectives and measurement modes, J. Atmos. Sci., 1999, Vol. 56, No. 2, pp. 127–150.
  8. Burrows J. P., Weber M., Buchwitz M., Roznov V. V., Ladstatter-Weissenmayer A., Richter A., DeBeek R., Hoogen R., Bramstedt K., Eichmann K.-U., Eisinger M., Perner D., The global ozone monitoring experiment (GOME): Mission concept and first scientific results, J. Atmos. Sci., 1999, Vol. 56, pp. 151–175.
  9. Dobber M. R., Dirksen R. J., Levelt P. F., vanderOord G. H. J., Voors R. H. M., Kleipool Q., Jaross G., Kowalewski M., Hilsenrath E., Leppelmeier G. W., deVries J., Dierssen W., Rozemeijere N. C., Ozone monitoring instrument calibration, IEEE Trans. Geosci. Remote Sens., 2006, Vol. 44, No. 5, pp. 1209–1238.
  10. Dobrolenskiy Y. S., Ionov D. V., Korablev O. I., Fedorova A. A., Zherebtsov E. A., Shatalov A. E., Mantsevich S. N., Belyaev D. A., Vyazovetskiy N. A., Moiseev P. P., Tchikov K. N., Krasavtsev V. M., Savushkin A. V., Rumyantsev D. M., Kananykhin I. V., Viktorov A. I., Kozyura A. V., Moryakin S. A., Poberovskii A. V., Development of a space-borne spectrometer to monitor atmospheric ozone, Appl. Opt., 2015, Vol. 54, No. 11, pp. 3315–3322.
  11. Heath D. F., Krueger A. J., Roeder H. A., Henderson B. D., The solar backscatter ultraviolet and total ozone mapping spectrometer (SBUV/TOMS) for Nimbus 7, Opt. Eng., 1975, Vol. 14, No. 4, pp. 323–331.
  12. Kramarova N. A., Nash E. R., Newman P. A., Bhartia P. K., McPeters R. D., Rault D. F., Seftor C. J., Xu P. Q., Labow G. J., Measuring the Antarctic ozone hole with the new Ozone Mapping and Profiler Suite (OMPS), Atmos. Chem. Phys., 2014, Vol. 14, pp. 2353–2361.
  13. Levelt P. F., vanderOord G. H.J., Dobber M. R., Mälkki A., Visser H., de Vries J., Stammes P., Lundell J. O. V., Saari H., The ozone monitoring instrument, IEEE Trans. Geosci. Remote Sens., 2006, Vol. 44, No. 5, pp. 1093–1101.
  14. Munro R., Lang R., Klaes D., Poli G., Retscher C., Lindstrot R., Huckle R., Lacan A., Grzegorski M., Holdak A., Kokhanovsky A., Livschitz J., Eisinger M., The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing — an overview, Atmos. Meas. Tech., 2016, No. 9, pp. 1279–1301.
  15. PlattU., StuzJ., Differential Optical Absorption Spectroscopy (DOAS), Principles and Applications, Berlin – Heidelberg: Springer, 2008, 598 p.
  16. PommereauJ.–P., GoutailF., O3 and NO2 ground-based measurements by visible spectrometry during arctic winter and spring 1988, Geophys. Res. Letters., 1988, No. 15, pp. 891–894.
  17. Veefkind J. P., Aben I., McMullan K., Förster H., de Vries J., Otter G., Claas J., Eskes H. J., deHaan J. F., Kleipool Q., vanWeele M., Hasekamp O., Hoogeveen R., Landgraf J., Snel R., Tol P., Ingmann P., Voors R., Kruizinga B., Vink R., Visser H., Levelt P. F., TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications, Remote Sensing of Environment, 2012, Vol. 120, pp. 70–83.