ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 101-119

Monitoring of night fishing boat lights with VIIRS

M.N. Zhizhin 1, 2, 3 , А.А. Poyda 4 , E.O. Tyutlyaeva 5 , V.V. Konoplev 3 , C.D. Elvidge 2 
1 University of Colorado, Broomfield, USA
2 NOAA National Centers for Environmental Information, Boulder, USA
3 Space Research Institute RAS, Moscow, Russia
4 National Research Center Kurchatov Institute, Moscow, Russia
5 RSC Technologies, Moscow, Russia
Accepted: 21.12.2017
DOI: 10.21046/2070-7401-2018-15-1-101-119
Since the 70s of the last century, it was known that the satellite images obtained at night time can be used to detect bright electric lights from fishing boats. However, there was still no algorithm for automatic detection of ships using satellite data without operator participation. The paper presents an automatic system for detecting fishing boat lights at nighttime using images from the VIIRS multispectral radiometer on the Suomi NPP satellite. The new algorithm detects isolated bright spots that are sharply visible on the night sea’s surface. The algorithm is based on a high-frequency spatial filter based on the median and Wiener filters. The detection results are supported by additional filters of thunderstorm lightning, straylight in the instrument optics, local sharpness, lunar glint, local correlation in visible and infrared channels to remove interference from moonlight and clouds. The architecture of the data source storage, software implementation of the algorithm and methods of its multi-core optimization for various architectures are described, including KNL, Haswell, Broadwell. As an environmental application, a BACI analysis of the effects of mass fish poisoning off the coast of Vietnam in April 2016 was conducted. The boat detection system can be used both for operational monitoring of marine fisheries and for analyzing the long-term environmental consequences of fishing bans and marine environmental disasters of man-made and natural origin.
Keywords: nighttime remote sensing, multispectral remote sensing, VIIRS, fishing boat lights
Full text

References:

  1. Konoplev V. V., Boyarskiy M. N., Nazirov R. R., SCARP: masshtabiruemaya i otkazoustoichivaya platforma legkoi virtualizatsii dlya intensivnoi raboty s bol’shimi dannymi i oblachnykh prilozhenii (SCARP: scalable and fault tolerant light-weight virtualization platform for data intensive and cloud applications), Vychislitel’nye tekhnologii v estestvennykh naukakh: Metody superkomp’yuternogo modelirovaniya, chast’ 3, Moscow: IKI RAN, 2015, pp. 132–139.
  2. Cho K., Ito R., Shimoda H., Sakata T., Fishing fleet lights and sea surface temperature distribution observed by DMSP/OLS sensor, Int. J. Remote Sens., 1999, Vol. 20, pp. 3–9.
  3. Cox C., Munk W., Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter, J. Opt. Soc. Am., 1954, Vol. 44, Issue 11, pp. 838–850.
  4. Croft T. A., Nighttime Images of the Earth from Space., Sci. Am., 1978, Vol. 239, pp. 86–98.
  5. Croft T. A., Colvocoresses A. P., The Brightness of Lights on Earth at Night, Digitally Recorded by DMSP Satellite, USGS Open File Report, Reston, VA: U. S. Geological Survey, 1979, 57 p.
  6. Elvidge C. D., Baugh K. E., Zhizhin M., Hsu F. C., Why VIIRS data are superior to DMSP for mapping nighttime lights, Proc. Asia-Pac. Adv. Netw., 2013, Vol. 35, pp. 62–69.
  7. Elvidge C. D., Baugh K. E., Zhizhin M., Hsu F. C., Automatic Boat Identification System for VIIRS Low Light Imaging Data, Remote Sens., 2015, Vol. 7, No. 3, pp. 3020–3036, DOI:10.3390/rs70303020.
  8. Gonzales R. C., Woods R. E., Digital Image Processing, 2nd ed., Englewood Cliffs, NJ: Prentice-Hall, 2002.
  9. Janiczek P. M., De Young J. A., Computer programs for sun and moon illuminance with contingent tables and diagrams, U. S. Naval Observatory Circulars, 1987.
  10. Kiyofuji H., Saitoh S., Use of nighttime visible images to detect Japanese common squid Todarodes pacificus fishing areas and potential migration routes in the Sea of Japan, Mar. Ecol. Prog. Ser., 2004, Vol. 276, pp. 173–186.
  11. Lim J. S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ: Prentice Hall, 1990, 548 p.
  12. Maxwell M. R., Henry A., Elvidge C. D., Safran J., Hobson V. R., Nelson I., Tuttle B. T., Dietz J. B., Hunter J. R., Fishery Dynamics of the California market squid (Loligo opalescens), as measured by satellite remote sensing, Fish. Bull., 2004, Vol. 102, pp. 661–670.
  13. Miller S. D., Mills S. P., Elvidge C. D., Lindsey D. T., Lee T. F., Hawkins J. D., Suomi satellite brings to light a unique frontier of environmental imaging capabilities, Proc. Natl. Acad. Sci. USA, 2012, Vol. 109, pp. 15706–15711.
  14. Miller S. D., Straka W. III, Mills S. P., Elvidge C. D., Lee T. F., Solbrig J., Walther A., Heidinger A. K., Weiss S. C., Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band, Remote Sens., 2013, Vol. 5, pp. 6717–6766.
  15. Paddock R. C., Taiwan-Owned Steel Factory Caused Toxic Spill, Vietnam Says, New York Times, June 30, 2016.
  16. Rodhouse P. G., Elvidge C. D., Trathan P. N., Remote sensing of the global light-fishing fleet: An analysis of interactions with oceanography, other fisheries and predators, Adv. Mar. Biol., 2001, Vol. 39, pp. 261–303.
  17. Schueler C. F., Lee T. F., Miller S. D., VIIRS constant spatial-resolution advantages, Int. J. Remote Sens., 2013, Vol. 34, pp. 5761–5777.
  18. Stewart-Oaten A., Bence J. R., Temporal and Spatial Variation in Environmental Impact Assessment, Ecological Monographs, 2001, Vol. 71, pp. 305–339.
  19. Straka W. C. III, Seaman C. J., Baugh K., Cole K., Stevens E., Miller S. D., Utilization of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) day/night band for Arctic ship tracking and fisheries management, Remote Sens., 2015, Vol. 7, pp. 971–989.
  20. Vu C. T., Phan T. D., Chandler D. M., S3: A spectral and spatial measure of local perceived sharpness in natural images, IEEE Trans. Image Process, 2012, Vol. 21, pp. 934–945.
  21. Waluda C. M., Trathan P. N., Elvidge C. D., Hobson V. R., Rodhouse P. G., Throwing light on straddling stocks of Ilex argentinus: Assessing fishing intensity with satellite imagery, Can. J. Fish. Aquat. Sci., 2002, Vol. 59, pp. 592–596.
  22. Waluda C. M., Yamashiro C., Elvidge C. D., Hobson V. R., Rodhouse P. G., Quantifying light-fishing for Dosidicus gigas in the eastern Pacific using satellite remote sensing, Remote Sens. Environ., 2004, Vol. 91, pp. 129–133.
  23. Zhang X., Saitoh S.-I., Hirawake T., Nakada S., Koyamada K., Awaji T., Ishikawa Y., Igarashi H., An attempt of dissemination of potential fishing zones prediction map of Japanese common squid in the coastal water, southwestern Hokkaido, Japan, Proc. Asia-Pac. Adv. Netw., 2013, Vol. 36, pp. 132–141.