ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 245-257

Field measurements of the sea surface wave spectrum from photos of sunglitter taken from drone

M.V. Yurovskaya 1, 2 , V.N. Kudryavtsev 2, 1 , A. S. Shirokov 2 , I. Yu. Nadolya 2 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
2 Russian State Hydrometeorological University, St. Petersburg, Russia
Accepted: 12.12.2017
DOI: 10.21046/2070-7401-2018-15-1-245-257
Measurements from unmanned aerial vehicles (drones) are increasingly demanded in various applications to monitor the environment using remote sensing technique. This paper describes the technique for retrieval the two-dimensional wavenumber spectrum of the surface waves from drone sunglitter imagery. Technical features of using drones for the sea surface photographing are discussed and recommendations for measurement conducting are given. The sea surface elevation spectrum is derived from the brightness variations with use of a linear transfer function defined from smooth shape of the sunglitter. The method advantage consists in the absence of any additional assumptions about the shape of the reconstructed spectrum, the sky brightness, sea surface slope distribution, etc. A step-by-step algorithm for image processing is presented. The technique was tested during the field experiments around the Black Sea Platform (Katsiveli, Crimea) under various wind and wave conditions. Comparison between the surface wave spectra derived from the drone-borne sunglitter photographs with the wave spectra measured synchronously with the wave gauge on the platform has demonstrated rather good agreement. Results of this study indicate a potential efficiency of drones for investigation of the surface wave field.
Keywords: sunglitter, wind waves, wave spectrum, drone, field study
Full text


  1. BolshakovA. N., BurdyugovV. M., GrodskiyS. A., KudryavtsevV. N., Opredelenie spektra energonesushchikh poverkhnostnykh voln po izobrazheniyu solnechnogo blika (Determination of energy spectrum of surface waves on the image of the solar flare), Issledovanie Zemli iz kosmosa, 1988, No. 5, pp. 11–18.
  2. BolshakovA. N., BurdyugovV. M., GrodskyS. A., KudryavtsevV. N., ProschenkoV. G., Spectra of energy-carrying surface-waves using solar highlight images ― comparison with in-situ data, Earth Observations and Remote Sensing, 1990, Vol. 8, pp. 29–40.
  3. BondurV. G., MuryninA. B., Methods for retrieval of sea wave spectra from aerospace image spectra, Izvestiya, Atmospheric and Oceanic Physics, 2016, Vol. 52, No. 9, pp. 877–887, DOI:10.1134/S0001433816090085.
  4. BondurV. G., DulovV. A., MuryninA. B., YurovskyYu. Yu, A study of sea-wave spectra in a wide wavelength range from satellite and in-situ data, Izvestia, Atmospheric and Oceanic Physics, 2016, Vol. 52, No. 9, pp. 888–903, DOI:10.1134/S0001433816090097.
  5. LoupianE. A., Reconstructing the angular energy distribution in the 2D-spectrum of the rough sea surface from its optical imagery, Issledovaniye Zemli iz Kosmosa, 1988, No. 3, pp. 31−35.
  6. ShuleikinV. V., Fizika moria (Marine physics), Moscow: Izd. AN SSSR, 1941, 833 p.
  7. YurovskayaM. V., KudryavtsevV. N., ChapronB., DulovV. A., Interpretatsiya opticheskikh sputnikovykh izobrazheniy Chernogo morya v zone solnechnogo blika (Interpretation of the Black Sea optical satellite images in sun glitter area), Morskoy Gidrofizicheskiy Zhurnal (Marine Hydrophysical Journal), 2014, No. 4, pp. 68−82.
  8. ApelJ. R., ByrneH. M., ProniJ. R., CharnellR. L., Observation of oceanic internal and surface waves from the Earth Resources Technology Satellite, J. Geophys. Res., 1975, Vol. 80, pp. 865–881.
  9. BarberN. F., Finding the direction of sea waves, Nature, 1954, Vol. 174, pp. 1048–1050.
  10. BréonF. M., HenriotN., Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions, J. Geophys. Res., 2006, Vol. 111, C06005, DOI:10.1029/2005JC003343.
  11. CoxC., MunkW., Statistics of the sea surface derived from sun glitter, J. Marine Res., 1954, Vol. 13, No. 2, pp. 199–227.
  12. CoxC., MunkW., Slopes of the sea surface deduced from photographs of sun glitter, Bull. Scripps Inst. Oceanogr., 1956, Vol. 6, No. 9, pp. 401–488.
  13. GelpiC. G., SchuraytzB. C., HusmanM. E., Ocean wave height spectra computed from high-altitude, optical, infrared images, J. Geophys. Res., 2001, Vol. 106, No. C12, pp. 31403–31413.
  14. HenningsI., MatthewsJ., MetznerM., Sun glitter radiance and radar cross-section modulations of the sea bed, J. Geophys. Res., 1994, Vol. 99, No. C8, pp. 16303–16326.
  15. KudryavtsevV., MyasoedovA., Chapron B., Johannessen J., Collard F., Joint sun-glitter and radar imagery of surface slicks, Remote Sens. Environ., 2012, Vol. 120, pp. 123–132, DOI:10.1016/j.rse.2011.06.029.
  16. KudryavtsevV., MyasoedovA., Chapron B., Johannessen J., Collard F., Imaging meso-scale upper ocean dynamics using SAR and optical data, J. Geophys. Res.: Oceans, 2012, Vol. 117, C04029, DOI: 10.1029/2011JC007492.
  17. KudryavtsevV., YurovskayaM., ChapronB., CollardF., DonlonC., Sun glitter imagery of ocean surface waves: Part 1. Directional spectrum retrieval and validation, J. Geophys. Res.: Oceans, 2017, Vol. 122, No. 2, pp. 1369−1383, DOI:10.1002/2016JC012425.
  18. KudryavtsevV., YurovskayaM., ChapronB., CollardF., DonlonC., Sun glitter imagery of surface waves. Part 2: Waves transformation on ocean currents, J. Geophys. Res.: Oceans, 2017, Vol. 122, No. 2, pp. 1384−1399, DOI:10.1002/2016JC012426.
  19. MonaldoF. M., KasevichR. S., Daylight imagery of ocean surface waves for wave spectra, J. Phys. Oceanogr., 1982, Vol. 11, pp. 272−283.
  20. YurovskyYu. Yu., KudryavtsevV. N., GrodskyS. A., ChapronB., Ka-band dual co-polarized empirical model for the sea surface radar cross-section, IEEE Trans. Geosci. Remote Sens., 2016, Vol. 55, No. 3, pp. 1629−1647, DOI:10.1109/TGRS.2016.2628640.