ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 206-220

Using data of dual-frequency rain radar for monitoring the formation and destruction of the ice cover on Lake Baikal in the autumn-winter of 2015–2016

V.Yu. Karaev 1 , M.A. Panfilova 1 , E.M. Meshkov 1 , G.N. Balandina 1 , Z.V. Andreeva 2 , A.A. Maksimov 2 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
2 State Research Center “Planeta”, Moscow, Russia
Accepted: 06.10.2017
DOI: 10.21046/2070-7401-2018-15-1-206-220
A study of the manifestations in the radar image of a two-frequency precipitation radar of satellite GPM (Global Precipitation Measurement) of the process of formation and destruction of ice on Lake Baikal in the autumn-winter of 2015–2016 was carried out. For processing we chose three time intervals associated with three typical status of lake surface: 1) open water in November–December 2015; 2) ice cover at negative temperatures (dry ice) in February–March 2016, and 3) ice cover at positive air temperature (wet ice) in April-May 2016. For the first time the dependence of back scattering cross-section on the angle of incidence at small angles of incidence in the Ku and Ka-bands (0–18°) was investigated. It was shown that at transition from the rough water surface to the ice cover at small incidence angles there is a change in the function describing the dependence of backscatter radar cross section on incidence angle. At reflection from the water surface, the angular dependence of the radar cross section is described by a Gaussian function. The angular dependence for ice cover can be described by a fractional-rational function. The change of the form of the function describing the angular dependence in the Ku- and Ka-bands is a reliable indicator for separating water surface and ice cover. To apply this criterion, it is necessary to have measurements at few incidence angles. At transition to positive air temperature (wet ice), the backscatter radar cross section becomes much smaller than in the case of negative temperatures (dry ice) at the same incidence angles. Therefore regular monitoring of internal lakes allows revealing changes in ice state and detect ice melt process. With destruction of the ice cover, the angular dependence of backscatter radar cross section reverses to the Gaussian form.
Keywords: dual-frequency precipitation radar, radar cross section, inland waters, formation and destruction of ice cover, remote sensing at the small incidence angles
Full text

References:

  1. Bass F. G., Fuks I. M., Rasseyanie voln na statisticheski nerovnoi poverkhnosti, (Wave Scattering from Statistically Rough Surfaces), Moscow: Nauka, 1972, 424 p.
  2. Bronshtein I., Semendyaev K., Spravochnik po matematike dlya inzhenerov i uchashchikhsya vtuzov (A handbook on mathematics for engineers and students of technical colleges), Moscow: Nauka, 1986, 544 p.
  3. Vnotchenko S. L., Volkov A. M., Grischenko V. D., Kovalenko A. I., Kurevleva T. H., Makridenko L. A., Martynov S. I., Neiman I. S., Pichugin A. P., Smirnov S. N., Kosmicheskaya radiolokatsionnaya sistema monitoringa ledovogo pokrova i poverkhnosti okeana (Space radar system for the monitoring of ice cover and the ocean surface), Elektromagnitnye volny i elektronnye sistemy, 2000, Vol. 5, No. 5, pp. 34–40.
  4. Garnakeryan A. A., Sosunov A. S., Radiolokatsiya morskoi poverkhnosti (Radiolocation of sea surface), Rostov: Izd. Rostovskogo universiteta, 1978, 144 p.
  5. Efimov V. B., Kalmykov A. I., Komyak V. A., Kurekin A. S., Levda A. S., Pichugin A. P., Fetisov A. B., Shestopalov V. P., Shilo S. A., Cymbal V. N., Gavrilenko A. S., Bass F. G., Elensky L. V., Zeldis V. I., Sinicyn Yu. A., Timchenko A. I., Issledovanie ledovykh pokrovov radiophyzicheskimi sredstvami s aerokosmicheskikh nositelei (Study of ice cover by radiophysic means from aerospace vehicles), Izvestiya AN USSR, ser. Fizika atmosphery i okeana, 1985, Vol. 21, No. 5, pp. 512–520.
  6. Karaev V., Panfilova M., Titchenko Yu., Meshkov E., Andreeva Z., Otsenka perspektiv primeneniya dvukhchastotnogo dozhdevogo radiolokatora dlya monotoringa navodnenii (Assessment of the prospects for the application of dual-frequency rain radar for flood monitoring), 14th konf. “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (14th Conf. “Current Problems in Remote Sensing of the Earth from Space”), 14–18 Nov. 2016, Moscow, IKI RAN, Abstracts, 2018, p. 81.
  7. Karaev V., Panfilova M., Titchenko Yu., Meshkov E., Balandina G., Andreeva Z. (2017a) Pervye resultaty monitoringa formirovaniya i razrusheniya ledyanogo pokrova v zimnii period 2014–2015 gg. na ozere Ilmen po dannym dvukhchastotnogo dozhdevogo radiolokatora (The first results of monitoring the formation and destruction of the ice cover in winter 2014–2015 on lake Ilmen according to the measurements of Dual-frequency precipitation radar), Issledovanie Zemli iz kosmosa, 2017, No. 3, pp. 30–39.
  8. Karaev V., Panfilova M., Meshkov E., Titchenko Yu., Baldndina G., Andreeva Z. (2017b) Razvitie gydrologicheskoy obstanovki na rekakh po dannym dvukhchastotnogo dozhdevogo radiolokatora: pervye resultaty (The development of the hydrological situation on the rivers by the dual-frequencies precipitation radar data: first results), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 1, pp. 185–199.
  9. Kobzar A. I., Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov (Applied mathematical statistics. For engineers and scientists), Moscow: Fizmatlit, 2012, 816 p.
  10. Konyukhov S. N., Dranovsky V. I., Cymbal V. N., Radiolokatsionnye metody i sredstva operativnogo distantsionnogo zondirovaniya Zemli s aerokosmicheskikh nositelei (Radar methods and means of operative remote sensing of the Earth from aerospace carriers), Kiev: ANTC “Aviadiagnostika”, 2007, 440 p.
  11. Krasyuk N., Rosenberg V., Korabelnaya radiolokatsiya i meteorologiya (Shipborne radar and meteorology), Leningrad: Sudostroenie, 1970, 325 p.
  12. Lebedev G. A., Suhorukov K. K., Rasprostranenie elektromagnitnykh i akusticheskikh voln v morskom l’du (Propagation of electromagnetic and acoustic waves in sea ice), St. Petersburg: Gidrometeoizdat, 2001, 81 p.
  13. Melnik Yu. A., Radiolokatsionnye metody issledovaniya Zemli (Radar methods of Earth exploration), Moscow: Sovetskoe radio, 1980, 264 p.
  14. Mitnik L. N., Viktorov S. V., Radiolokatsiya poverkhnosti Zemli iz kosmosa (Radiolocation of Earth surface from space), Leningrad: Gidrometeoizdat, 1990, 200 p.
  15. Panfilova M., Karaev V., Balandina G., Izmerenie dispersii naklonov krupnomasshtabnogo volneniya i vosstanovlenie skorosti privodnogo vetra v polose obzora dvukhchastotnogo dozhdevogo radiolokatora (Measurement of the variance of the large-scale slopes and retrieval of wind speed in the swath of dual-frequency precipitation radar), 14 konf. “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa”, (14th Conf. “Current Problems in Remote Sensing of the Earth from Space”), 14–18 November 2016, Moscow, IKI RAN, Abstracts, p. 294.
  16. Chashkin Yu. P., Matematicheskaya statistika, Analiz i obrabotka dannykh (Mathematical statistics. Analysis and data processing: study guide), Rostov-on-Don: Feniks, 2010, 236 p.
  17. Anderson C., Bonekamp H., Figa J., Wilson J., de Smet A., Duff C., Stoffelen A., Verhoev A., Porta­bella M., Verspeek J., Metop-A ASCAT Commissioning Quality Report, Editor: EUMETSAT, Ser. EUM/MET/REP/08/0525, 2009, Vol. 5, 61 p.
  18. Donelan M., Pierson W., Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry, J. Geophysical Research, 1987, Vol. 92, No. C5, pp. 4971–5029.
  19. Fors A., Brekke C., Gerland S., Doulgeris A., Beckers J., Late summer arctic sea ice surface roughness signatures in C-band SAR data, J. Selected Topics in Applied Earth Observations and Remote Sensing, 2016, Vol. 9, No. 3, pp. 1199–1215.
  20. Leigh S., Wing Z., Clausi D., Automated ice-water classification using dual polarization SAR satellite imagery, IEEE Transactions on Geoscience and Remote Sensing, 2014, Vol. 52, No. 9, pp. 5529–5539.
  21. Long D. G., Drinkwater M. R., Holt B., Saatchi S., Bertoia C., Global Ice and Land Climate Studies Using Scatterometer Image Data, EOS, Transaction of the American Geophysical Union, 2001, Vol. 82, p. 503.
  22. Nekrasov A., Veremyev V., Airborne weather radar concept for measuring water surface backscattering signature and sea wind at circular flight, Naše More, 2016, Vol. 63, No. 4, pp. 278–282.
  23. Nekrasov A., Khachaturian A., Veremyev V., Bogachev M., Sea surface wind measurement by airborne weather radar scanning in a wide-size sector, Atmosphere, 2016, Vol. 7, No. 5, pp. 1–11.
  24. Ochilov S., Clausi D., Operational SAR sea-ice image classification, IEEE Transactions on Geoscience and Remote Sensing, 2012, Vol. 50, No. 11, pp. 4397–4408.
  25. Owen M. P., Long D. G., Prior selection for QuikScat ultra-high resolution wind and rain retrieval, IEEE Transactions on Geoscience and Remote Sensing, 2013, Vol. 51, No. 3, pp. 1555–1567.
  26. Panfilova M., Karaev V., The precipitation radar as instrument for measurement of sea waves slopes, Proc. IGARSS 2017, Fort Worth, USA, 2017, pp. 739–742.
  27. Remund Q. P., Long D. G., Drinkwater M. R., An iterative approach to multisensor sea ice classification, IEEE Transactions on Geoscience and Remote Sensing, 2000, Vol. 38, pp. 1843–1856.
  28. Rivas M. B., Stoffelen A., New Bayesian algorithm for sea ice detection with Quikscat, IEEE Transactions on Geoscience and Remote Sensing, 2011, Vol. 49, No. 6, pp. 1894–1901.
  29. Weissman D. E., Bourassa M., Tongue J., Effects of rain rate and wind magnitude on SeaWinds scatterometer wind speed errors, J. Atmospheric and Oceanic Technology, 2002, Vol. 19, No. 5, pp. 738–746.
  30. Zakhatkina N. Yu., Alexandrov V. Yu., Johannessen O. N., Sandven S., Frolov I. Ye., Classification of sea ice types in ENVISAT synthetic aperture radar images, IEEE Transactions on Geoscience and Remote Sensing, 2013, Vol. 51, No. 5, pp. 2587–2600.