ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 282-295

Investigation of the atmospheric boundary layer dynamics over the Laptev Sea coastal polynya using WRF modelling

I.A. Repina 1, 2 , A.A. Aniferov 1 
1 A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia
2 Space Research Institute RAS, Moscow, Russia
Accepted: 31.12.2017
DOI: 10.21046/2070-7401-2018-15-1-282-295
Using the mesoscale model WRF Polar, atmospheric processes were studied over the polynyas of the Laptev Sea. In the paper the case of polynyas formation in April – May 2008 in the Laptev Sea was considered. Comparison of model experiments with different ice concentration data was performed: in one case the dynamics of the atmospheric boundary layer was simulated at 100 % ice concentration, in the other case real ice concentration was taken from satellite data. Cold and warm periods, when the temperature contrast between the water and the air was small, were considered. Model experiments were conducted on a grid of 10; 5 and 3 km, which allowed us to consider the effect of horizontal resolution on the accuracy of the experiment. The influence of polynya on the temperature, wind speed and cloud formation over the polynya was established. The degree of influence depends on the synoptic conditions in the region and decreases with the increase in cyclonic activity.
Keywords: Arctic climate, polynyas and leads, remote sensing, atmospheric boundary layer, mesoscale modelling
Full text

References:

  1. DmitrenkoI. A., KirillovS. A., GribanovV. A., Kassens H., Otsenka ledoproduktivnosti statsionarnykh polynei na shel’fe morei Karskogo i Laptevykh na osnove mnogoletnikh gidrologicheskikh nablyudenii (Sea-ice production over the Laptev Sea and Kara sea shelf polynya inferred from historical summer-to-winter hydrographic observations), Meteorologya i Hydrologia, 2001, No. 12, pp. 38–49.
  2. IvanovV. V., AlexeevV. A., AlexeevaT. A., KoldunovN. V., RepinaI. A., SmirnovA. V., Arkticheskii ledyanoi pokrov stanovitsya sezonnym? (Does Arctic Ocean Ice Cover Become Seasonal?), Issledovanie Zemli iz kosmosa, 2013, No. 4, pp. 50–65.
  3. KarelinI. D., Issledovaniya statsionarnykh polynei po dannym nablyudenii so sputnikov (Coastal polynya investigations with satellite data), Trudy AANII, 1981, Vol. 388, pp. 104–109.
  4. RepinaI. A., SmirnovA. S., Heat and momentum exchange between the atmosphere and ice from the observational data obtained in the region of Franz Josef land, Izvestia RAN, Atmospheric and Oceanic Physics, 2000, Vol. 36, No. 5, pp. 618–626.
  5. RepinaI. A., IvanovV. V., Primenenie metodov distantsionnogo zondirovaniya v issledovanii dinamiki ledovogo pokrova i sovremennoi klimaticheskoi izmenchivosti Arktiki (Remote sensing in ice sea dynamic and modern Arctic climate investigation), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 5, pp. 89–103.
  6. RepinaI. A., ChechinD. G., Vliyanie polynei i razvodii v Arktike na strukturu atmosfernogo pogranichnogo sloya i regional’nyi klimat (Effect of the Arctic polynyas and leads on the atmospheric boundary layer structure and the regional climate), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, No. 4, pp. 162–172.
  7. RepinaI. A., ArtamonovA. Yu., SmirnovA. S., ChechinD. G., Issledovanie vzaimodeistviya okeana i atmosfery v polyarnykh raionakh v ramkakh mezhdunarodnogo polyarnogo goda (The investigation of the air-sea interaction in the Polar regions in IPY framework), Meteorologicheskie i geofizicheskie issledovania, G. V.Alekseev (ed.), Moscow – St. Petersburg, 2011, pp. 236–250.
  8. TikhonovV. V., RaevM. D., SharkovE. A., BoyarskiiD. A., RepinaI. A., KomarovaN. Yu., Monitoring morskogo l’da polyarnykh regionov s ispol’zovaniem sputnikovoi mikrovolnovoi radiometrii (Sea ice of polar regions monitoring with satellite microwave radiometry), Sovremennye problemy distantsionnogo zondi­rovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 150–169.
  9. TikhonovV. V., RaevM. D., SharkovE. A., BoyarskiiD. A., RepinaI. A., KomarovaN. Yu., Sputnikovaya mikrovolnovaya radiometriya morskogo l’da polyarnykh regionov. Obzor (Satellite microwave radiometry of sea ice of polar regions. Review), Issledovanie Zemli iz kosmosa, 2016, No. 4, pp. 65–84.
  10. AagaardK., CoachmanL. K., CarmackE., On the halocline of Arctic Ocean, Deep-Sea Research, 1981, Vol. 28A, No. 6, pp. 529–545.
  11. AdamsS., WillmesS., HeinemannG., RozmanP., TimmermannR., SchröderD., Evaluation of simulated sea-ice concentrations from sea-ice/ocean models using satellite data and polynya classification methods, Polar Res., 2011, Vol. 30, No. 7124, p. 17, DOI:10.3402/polar.v30i0.7124.
  12. AndreasE. L., CashB. A., Convective heat transfer over wintertime leads and polynyas, J. Geophys. Res., 1999, Vol. 104, Issue C11, pp. 25721–25734.
  13. Arctic Climate Assessment (ACIA). Impacts of a Warming Arctic, Scientific Report, New York: Cambridge Univ. Press, 2004, 139 p.
  14. BarberD. G., MassomR. A., The role of sea ice in Arctic and Antarctic polynyas, Elsevier Oceanography Series. Polynyas: Windows to the World, W. O. Smith, D. G. Barber (eds.), Amsterdam, 2007, pp. 1–54.
  15. BromwichD. H., HinesK. M., BaiL. S., Developments and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean, J. Geophys. Res., 2009. Vol. 114. Issue D8, CiteID D08122, DOI:10.1029/2008JD010300.
  16. CavalieriD. J., A Microwave Technique for Mapping Thin Sea Ice, J. Geophys. Res., 1995, Vol. 99, Issue C6, pp. 12561–12572.
  17. CavalieriD. J., MartinS., A passive-microwave study of polynyas along the Antarctic Wilkes Land coast, Oceanology of the Antarctic Continental Shelf. Antarctic Research Series, S. S. Jacobs (ed.), Washington: AGU, 1985, Vol. 43, pp. 227–252.
  18. CavalieriD. J., MartinS., The contribution of Alaskan, Siberian, and Canadian coastal polynyas to the cold halocline layer of the Arctic Ocean, J. Geophys. Res., 1994, Vol. 99, Issue C9, pp. 18343–18362.
  19. ChechinD. G., LüpkeC., RepinaI. A., GryanikV. M., Idealized dry quasi 2-D mesoscale simulations of cold-air outbreaks over the marginal sea ice zone with fine and coarse resolution, J. Geophys. Res. Atmos., 2013, Vol. 118, pp. 8787–8813, DOI:10.1002/jgrd.50679.
  20. DanielsonS., AagaardK., WeingartnerT., MartinS., WinsorP., GawarkiewiczG., QuadfaselD., The St. Lawrence polynya and the Bering shelf circulation: New observations and a model comparison, J. Geophys. Res., 2006, Vol. 111, Issue C9, CiteID C09023, DOI:10.1029/2005JC003268.
  21. DareR. A., AtkinsonB. W., Atmospheric response to spatial variations in concentration and size of poly­nyas in the Southern ocean sea-ice zone, Boundary-Layer Meteorology, 2000, Vol. 94, No. 1, pp. 65–88.
  22. DethleffD., LoeweP., KleineE., The Laptev Sea flaw lead — detailed investigation on ice formation and export during 1991/1992 winter season, Cold regions science and technology, 1998, Vol. 27, Issue 3, pp. 225–243.
  23. DmitrenkoI., TyshkoK., KirillovS., EickenH., HölemannJ., KassensH., Impact of flaw polynyas on the hydrography of the Laptev Sea, Global Planet Change, 2004, Vol. 48, No. 1–3, pp. 9–27, DOI:10.1016/j.gloplacha.2004.12.016.
  24. DokkenS. T., WinsorP., MarkusT., AskneJ., BjörkG., ERS SAR characterization of coastal poly­nyas in the Arctic and comparison with SSM/I and numerical model investigations, Remote Sensing of Environment, 2002, Vol. 80, Issue 2, pp. 321–335.
  25. EbnerL., SchroderD., HeinemannG., Impact of Laptev Sea flaw polynyas on the atmospheric boundary layer and ice production using idealized mesoscale simulations, Polar Research, 2011, Vol. 30, p. 7210, DOI:10.3402/polar.v30i0.7210.
  26. ErnsdorfT., SchröderD., AdamsS., HeinemannG., TimmermannR., DanilovS., Impact of atmospheric forcing data on simulations of the Laptev Sea polynya dynamics using the sea-ice ocean model FESOM, J. Geophys. Res., 2011, Vol. 116, Issue C12, CiteID C12038, p. 18, DOI:10.1029/2010JC006725.
  27. FiedlerE. K., Lachlan-CopeT. A., RenfrewI. A., KingJ. C., Convective heat transfer over thin ice covered coastal polynyas, J. Geophys. Res., 2010, Vol. 115, Issue C10, CiteID C10051.
  28. GoosseH., FichefetT., Open-ocean convection and polynya formation in a large-scale ice–ocean model, Tellus, 2001, Vol. 53A, pp. 94–111.
  29. HebbinghausH., SchlunzenH., DierrerS., Sensitivity studies on vortex development over a polynya, Theoretical and Applied Climatology, 2007, Vol. 88, No. 1, pp. 1–16.
  30. HiblerW. D., BryanK., A diagnostic ice–ocean model, J. Phys. Oceanogr., 1987, Vol. 17, No. 7, pp. 987–1015.
  31. JanjicZ. I., Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso Model, NCEP Office Note, 2002, No. 437, 61 p.
  32. IvanovV. V., GolovinP. N., Observations and modelling of dense water cascading from the Laptev Sea shelf, J. Geophys. Res., 2007, Vol. 112, Issue C9, CiteID C09003, pp. 1–15, DOI:10.1029/2006JC003882.
  33. KernS., SpreenG., KaleschkeL., DelaRosaS., HeygsterG., Polynya Signature Simulation Method polynya area in comparison to AMSR-E 89 GHz sea-ice concentrations in the Ross Sea and off the Adélie Coast, Antarctica, for 2002–05: first results, Ann. Glaciol., 2007, Vol. 46, No. 1, pp. 409–418, DOI:10.3189/172756407782871585.
  34. KwokR., ComisoJ., MartinS., DruckerR., Ross Sea polynyas: Response of ice concentration retrie­vals to large areas of thin ice, J. Geophys. Res., 2007, Vol. 112, Issue C12, CiteID C12012, pp. 13, DOI: 10.1029/2006JC003967.
  35. MarkusT., BurnsB. A., A method to estimate sub–pixel scale coastal polynyas with satellite passive microwave data, J. Geophys. Res., 1995, Vol. 100, Issue C3, pp. 4473–4487.
  36. MarkusT., KottmeierC., FahrbachE., Ice formation in coastal polynyas in the Weddell Sea and their impact on oceanic salinity, Antarctic Sea Ice: Physical Processes, Interactions and Variability. Antarctic Research Series, M. O. Jeffries (ed.), Washington: AGU, 1998, Vol. 74, pp. 273–292.
  37. Martin S., Cavalieri D. J., Contributions of the Siberian shelf polynyas to the Arctic Ocean intermediate and deep water, J. Geophys. Res.: Oceans, 1989, Vol. 94, Issue C9, pp. 12725–12738.
  38. MartinS., DruckerR., KwokR., HoltB., Improvements in the estimates of ice thickness and production in the Chukchi Sea polynyas derived from AMSR-E, Geophys. Res. Lett., 2005, Vol. 32, Issue 5, p. L05505, DOI:10.1029/2004GL022013.
  39. MaykutC. A., Energy exchange over young sea ice in the central Arctic, J. Geophys. Res., 1978, Vol. 83, Issue C7, pp. 3646–3658.
  40. Morales MaquedaM. A., WillmottA. J., BiggsN. R. T., Polynya dynamics: A review of observations and modeling, Rev. Geophys., 2004, Vol. 42, Issue 1, p. RG1004, DOI:10.1029/2002RG000116.
  41. MorrisonH., ThompsonG., TatarskiiV., Impact of cloud micrpohysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes, Monthly Weather Review, 2008, Vol. 137, Issue 3, pp. 991–1007.
  42. NihashiS., OhshimaK. I., TamuraT., FukamachiY., SaitohS., Thickness and production of sea ice in the Okhotsk Sea coastal polynyas from AMSR-E, J. Geophys. Res., 2009, Vol. 114, Issue C10, CiteID C10025, DOI:10.1029/2008JC005222.
  43. PiaseC. H., The size of wind-driven polynyas, J. Geophys. Res., 1987, Vol. 92, pp. 7049–7059.
  44. RiggsG. A., HallD. K., SalomonsonV. V., MODIS Sea Ice Products: User Guide to Collection 6, 2012, https://nsidc.org/sites/nsidc.org/files/files/modis-sea-ice-user-guide-C6%5B1%5D.pdf.
  45. SavijärviH., Antarctic local wind dynamics and polynya effects on the Adélie Land coast, Quarterly J. Royal Meteorological Soc., 2011, Vol. 137, No. 660, pp. 1804–1811.
  46. SchneiderW., BudeusG., On the generation of the Northeast water polynya, J. Geophys. Res., 1995, Vol. 100, Issue C3, pp. 4269–4286.
  47. SchwarzkopfM. D., FelsS. B., The simplified exchange method revisited ― an accurate, rapid method for computation of infrared cooling rates and fluxes, J. Geophys. Res., 1991, Vol. 96, Issue D5, pp. 9075–9096.
  48. SpreenG., KaleschkeL., HeygsterG., Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophys. Res., 2008, Vol. 113, Issue C2, CiteID C02S03, DOI:10.1029/2005JC003384.
  49. TamuraT., OhshimaK. I., Mapping of sea ice production in the Arctic coastal polynyas, J. Geophys. Res., 2011, Vol. 116, Issue C7, CiteID C07030, DOI:10.1029/2010JC006586.
  50. VenkatramA., A model of internal boundary-layer development, Boundary-Layer Meteorology, 1977, Vol. 11, Issue 4, pp. 419–437.
  51. WangX., KeyJ. R., LiuY., A thermodynamic model for estimating sea and lake ice thickness with optical satellite data, J. Geophys. Res., 2010, Vol. 115, Issue C12, CiteID C12035, p. 14, DOI:10.1029/2009JC005857.
  52. WillmesS., KrumpenT., AdamsS., RabensteinL., HaasC., HölemannJ., HendricksS., HeinemannG., Cross-validation of polynya monitoring methods from multisensor satellite and airborne data: a case study for the Laptev Sea, Can. J. Remote Sens., 2010, Vol. 36, pp. 196–210, DOI:10.5589/m10-012.
  53. WinsorP., BjörkG., Polynya activity in the Arctic Ocean from 1958 to 1997, J. Geophys. Res., 2000, Vol. 105, Issue C4, pp. 8789–8803.
  54. ZwallyH. J., ComisoJ. C., GordonA. L., Antarctic offshore leads and polynyas and oceanographic effects Oceanology of the Antarctic Continental Shelf, Antarctic Research Series, S. S. Jacobs (ed.), Washington: AGU, 1985, Vol. 43, pp. 203–226.