ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 123-137

Seasonal variability of backscattering coefficient based on Sentinel-1 radar images: a case study of Kotelny Island

K.A. Troshko 1, 2 , E.A. Baldina 1 
1 M.V. Lomonosov Moscow State University, Moscow, Russia
2 Institute of Geography RAS, Moscow, Russia
Accepted: 11.10.2017
DOI: 10.21046/2070-7401-2018-15-1-123-137
New satellite radar system Sentintel-1 implements observation of polar regions with high frequency providing an opportunity of regular monitoring of these remote and poorly studied territories. A large amount of information obtained during the first years of this system exploitation allows estimating its value for characterization of these regions. We have examined a time series of Sentintel 1A/C-band SAR (synthetic aperture radar) backscatter coefficient for the period between November 2014 and November 2016 to assess their potential for detecting major seasonal changes of the surface within Kotelny Island (New Siberian Islands archipelago). Temporal backscatter signatures of ten test sites located within the typical landscapes of the island were analyzed. A set of additional information sources about the area (maps, optical images, meteorological data) used for radar images interpretation allowed revealing the main factors influencing the backscattering signal. The largest backscatter variations observed within the studied sites are associated with the processes accompanying the periods of established negative (freezing of active layer, snowfall) and positive (thawing of snow cover and active layer, vegetation growth) temperatures. Differences of backscatter within each image are related to peculiarities of the relief, soils, the type and density of vegetation, amount of standing water. A good separability of Arctic landscapes based on SAR backscatter trends makes it promising to use multi-temporal radar data for landscape types classification and mapping.
Keywords: Arctic, New Siberian Islands, Kotelny Island, tundra landscapes, permafrost, radar remote sensing, Sentinel-1, multi-temporal images, C-band, normalized radar cross section, NRCS temporal signatures, seasonal changes
Full text


  1. Materialy kompleksnogo ekologicheskogo obsledovaniya uchastkov territorii, obosnovyvayushhego pridanie etoy territorii pravovogo statusa osobo okhranyaemoy prirodnoy territorii federal’nogo znacheniya — gosudarstvennogo prirodnogo zakaznika Novosibirskie ostrova”. Tom 1 (The materials of a complex ecological survey of sites that justify bringing in this area the legal status of specially protected natural area of federal significance — the state natural reserve “New Siberian Islands”, Vol. 1), Moscow: WWF, 2015, 484 p.
  2. Mitnik L. M., Khazanova E. S., Dinamika ledyanogo pokrova v moryakh Vostochno-Sibirskom i Laptevykh po dannym sputnikovogo mikrovolnovogo zondirovaniya vo vtoroy polovine oktyabrya 2014 g. (Ice cover dynamics in the East Siberian and Laptev Seas at the second half of October 2014 from remote sensing data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 2, pp. 100–113.
  3. Myshlyakov S. G., Vozmozhnosti radarnykh snimkov Sentinel-1 dlya resheniya zadach selskogo hozyaystva (Possibilities of Sentinel-1 radar imagery for agriculture), Geomatica, 2016, No. 2, pp. 16–24.
  4. Novosibirskie ostrova. Sbornik statey (New Siberian Islands. Collected articles), G. L. Rutilevsky, R. K. Sisko (Eds.), Leningrad: Mor. Transport, 1963, 233 p.
  5. Novosibirskie ostrova. Fiz.-geogr. kharakteristika archipelaga (New Siberian Islands. Geographical characteristics of the archipelago), Ya. Ya. Gakkel (Ed.), Leningrad: Gidrometeoizdat, 1967, 212 p.
  6. Rodionova N. V., Sezonnye variatsii obratnogo rasseyaniya ot estestvennykh pokrovov Podmoskov’ya v sezon 2015–2016 godov po radarnym dannym SENTINEL 1A (Seasonal variations of backscatter from natural covers of Moscow region during the season 2015–2016 based on Sentinel-1A radar data), Materialy XIV Konf. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa (XIV Conf. “Current problems in remote sensing of the Earth from space”, Book of Abstracts), 2016, p. 367.
  7. Sovetskaya Arktika. Morya i ostrova Severnogo Ledovitogo okeana (Soviet Arctic. Seas and islands of the Arctic Ocean), Moscow: Nauka, 1970, 526 p.
  8. Antonova S., Kääb A., Heim B., Langer M., Boike J., Spatio-temporal variability of X-band radar backscatter and coherence over the Lena River Delta, Siberia, Remote Sensing of Environment, 2016, Vol. 182, pp. 169–191.
  9. Antonova S., Duguay C. R., Kääb A., Heim B., Langer M., Westermann S., Boike J., Monitoring bedfast ice and ice phenology in lakes of the Lena river delta using TerraSAR-X backscatter and coherence time series, Remote Sensing, 2016, Vol. 8, Issue 11, pp. 903.
  10. Atwood D. K., Gunn G. E., Roussi C., Wu J., Duguay C., Sarabandi K., Microwave backscatter from Arctic lake ice and polarimetric implications, IEEE Trans. Geoscience and Remote Sensing, 2015, Vol. 53, Issue 11, pp. 5972–5982.
  11. Crosetto M., Monserrat O., Devanthéry N., Cuevas-González M., Barra A., Crippa B., Persistent scatterer interferometry using Sentinel-1 data, Intern. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, Vol. XLI-B7, pp. 835–839.
  12. Duguay C. K., Rouse W. R., Lafleur P. M., Boudreau L. D., Crevier Y., Pultz T. J., Analysis of multi-temporal ERS–1 SAR data of subarctic tundra and forest in the northern Hudson Bay Lowland and implications for climate studies, Canadian J. Remote Sensing, 1999, Vol. 25, No. 1, pp. 21–33.
  13. Lauknes T. R., Larsen Y., Eckerstorfer M., Christiansen H. H., Permafrost landform dynamics at Kapp Linné central Svalbard, observed using high-resolution TerraSAR-X data, 2009–2012, TerraSAR-X Science Team Meeting, 10–12 June 2013, DLR Oberpfaffenhofen, 1 p.
  14. Liu L., Zhang T., Wahr J., InSAR measurements of surface deformation over permafrost on the North Slope of Alaska, J. Geophys. Res., 2010, Vol. 115, Issue F3, CiteID F03023, 14 p.
  15. Nagler T., Rott H., Hetzenecker M., Wuite J., Potin P., The Sentinel-1 Mission: New Opportunities for Ice Sheet Observations, Remote Sensing, 2015, Vol. 7, Issue 7, pp. 9371–9389.
  16. Park S.-E., Yamaguchi Y., Singh G., Bartsch A., Spatio-temporal monitoring of permafrost region using SAR remote sensing, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 2010, Vol. XXXVIII, Part 8, pp. 142–144
  17. Pivot F., C-Band SAR imagery for snow-cover monitoring at Treeline, Churchill, Manitoba, Canada, Remote Sensing, 2012, Vol. 4, Issue 7, pp. 2133–2155.
  18. Radiometric calibration of S-1 Level-1 Products Generated by the S-1 IPF, European Space Agency, 2015, 13 p.
  19. Sentinel-1 user handbook, European Space Agency, 2013, 80 p.
  20. Sharov A., Nikolskiy D., Satellite map series of long-term elevation changes on Eurasia’s northernmost ice caps, Proceedings of EARSeL Symposium, 3–6 June 2013, 14 p.
  21. Sobiech J., Boike J., Dierking W., Observation of melt onset in an Arctic tundra landscape using high resolution TerraSAR-X and Radarsat-2 data, IGARSS 2012 Proceedings, pp. 3552–3555.
  22. Strozzi T., Kouraev A., Wiesmann A., Sharov A., Wegmüller U., Werner C., Estimation of Arctic glacier motion with satellite L-band SAR data, Remote Sensing of Environment, 2008, Vol. 112, Issue 3, pp. 636–645.
  23. Woodhouse I. H., Introduction to Microwave Remote Sensing, CRC Press, 2005, 400 p.