ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 63-70

Physical limitations of the spatial resolution of space radioaltimeters

A.S. Zapevalov 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 25.09.2017
DOI: 10.21046/2070-7401-2018-15-1-63-70
Errors of recovery of the sea surface characteristics according to vertical radio sounding from spacecraft caused by the group structure of surface waves are analyzed. Errors occur when the dimensions of the local region L for which the characteristics of the wave field are determined become comparable with the length of the wave group LG. The analysis is carried out in the framework of the analytical model describing the wave profile. The model allows to specify the following characteristics: the skewness of surface elevations, the number of waves in the group and the groupiness factor. Numerical simulations show that at a significant wave height of 1 m, the local level can differ by a few centimeters from the mean level, if L < LG. Changes in skewness of the elevations of the local region of the sea surface lead to similar errors in the determination of the level. The magnitude of the error depends on the ratio of the length of the local region and the length of the wave group. The errors in determining the level increase linearly with increasing significant wave height. The group structure is also a source of errors in determining the significant wave height. To ensure that you receive the error in determining the significant wave height no more than 10 %, it is necessary to provide the following condition: the length of the local region for which it is calculated should be more than two times exceed the length of a group of waves.
Keywords: remote sensing, altimeter, level error, significant wave height, wave group structure
Full text


  1. BaskakovA. I., EgorovV. I., Perspektivnyi vysokotochnyi sputnikovyi al’timetr (Advanced high-precision satellite altimeter), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Vol. 5, No. 1, pp. 113–119.
  2. ZapevalovA. S., Starshie kumulyanty vozvyshenii morskoi poverhnosti (High-order cumulants of sea surface elevations), Russian Meteorology and Hydrology, 2011, Vol. 36, No. 9, pp. 624–629.
  3. Kos’yanR. D., PodymovI. S., PyhovN. V., Dinamicheskie protsessy beregovoi zony morya (Dynamic processes of the coastal zone of the sea), Moscow: Nauchnyi mir, 2003, 320 p.
  4. LavrovaO. Yu., KostyanoiA. G., LebedevS. A., MityaginaM. I., GinzburgA. I., SheremetN. A., Komp­leksnyi sputnikovyi monitoring morei Rossii (Integrated satellite monitoring of the Russia’s seas), Moscow: IKI RAN, 2011, 472 p.
  5. PresnuhinA. V., Gruppovaya struktura vetrovykh voln v Kaspiiskom more (Group structure of wind waves in the Caspian Sea), Proc. Int. Conf. dedicated to 100th birthday of Prof. V. V. Longinov, 14–17 September 2009, Moscow, 2009, pp. 31–33.
  6. BonekampH., MontagnerF., SantacesariaV., LoddoC. N., WannopS., TomazicI., O’CarrollA., KwiatkowskaE., ScharrooR., WilsonH., Core operational Sentinel-3 marine data product services as part of the Copernicus Space Component, Ocean Science, 2016, No. 12, pp. 787–795.
  7. BrownG. S., The average impulse response of a rough surface and its applications, IEEE Transactions on Antennas and Propagation, 1977, Vol. AP-25, pp. 67–74.
  8. GodaY., Statistical variability of sea state parameters as a function of wave spectrum, Proc. IAHR Seminar on Wave Anal. and Gen. in Lab. Basins, Lausanne, Switzerland, 1987.
  9. Gómez-EnriJ., GommengingerC. P., ChallenorP. G., SrokoszM. A., Drinkwater M. R., ENVISAT radar altimeter tracker bias, Marine Geodesy, 2006, Vol. 29, pp. 19–38.
  10. HasselmannK., BarnettT. P., BouwsE., CarlsonH., CartwrightD. E., EnkeK., EwingJ. A., GienappH., HasselmannD. E., KrusemanP., MeerburgA., MllerP., OlbersD. J., RichterK., SellW., WaldenH., Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Ergnzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe, 1973, Vol. 8, No. 12, 95 p.
  11. HausmanJ., LotnickiV., Sea state bias in radar altimetry revisited, Marine Geodesy, 2010, Vol. 33, Issue 1, pp. 336–347.
  12. HayneG. S., Radar altimeter mean return waveforms from near-normal-incidence ocean surface scattering, IEEE Transactions on Antennas and Propagation, 1980, Vol. AP-28, pp. 687–692.
  13. JhaA. K., WintersteinS. R., Nonlinear random ocean waves: prediction and comparison with data, Proc. 19th Intl. Offshore Mech. Arctic Eng. Symp., ASME, Paper No. OMAE 00–6125, 2000.
  14. PokazeevK. V., ZapevalovA. S., PustovoytenkoV. V., The simulation of a radar altimeter return waveform, Moscow University Physics Bulletin, 2013, Vol. 68, No. 5, pp. 420–425, DOI:10.3103/S0027134913050135.
  15. PokazeevK. V., ZapevalovA. S., PustovoytenkoV. V., A nonlinear model of sea surface waves, Moscow University Physics Bulletin, 2015, Vol. 70, No. 3, pp. 213–215.
  16. QueffeulouP., Long-term validation of wave height measurements from altimeters, Marine Geodesy, 2004, Vol. 27, pp. 495–510.
  17. RodriguezE., MartinJ. M., Estimation of the electromagnetic bias from retracked TOPEX data, J. Geoph. Res., 1994, Vol. 99, Issue C12, pp. 24971–24979.
  18. ZapevalovA. S., Effect of skewness and kurtosis of sea-surface elevations on the accuracy of altimetry surface level measurements, Izvestiya, Atmospheric and Oceanic Physics, 2012, Vol. 48, No. 2, pp. 200–206.
  19. ZapevalovA. S., Bol’shakovA. N., SmolovV. E., Simulating of the probability density of sea surface elevations using the Gram-Charlier series, Oceanology, 2011, Vol. 51, No. 3, pp. 407–414.