ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 221-232

Vortex upwelling as a mechanism for creating favorable conditions for saury clusters in the South Kuril region

T.V. Belonenko 1 , P.K. Kozub 1 
1 Saint Petersburg State University, Saint Petersburg, Russia
Accepted: 06.10.2017
DOI: 10.21046/2070-7401-2018-15-1-221-232
We analyze the satellite data for the sea surface temperature (SST), sea level (ADT-absolute dynamic topography), as well as the fishing maps with the information on fishing fleet distribution for September 2001. We established that vortex formations of cyclonic type with reduced values of SST-anomalies are favorable conditions for saury accumulations in the South Kuril region. We show that Pacific saury clusters are associated with the mesoscale cyclonic structures with negative SST-anomalies in the range from –2 to –0.5 °C and negative values of ADT in the range from –0.21 to –0.08 m. Vortex upwelling is described as the main mechanism for creating favorable conditions for the formation of commercial saury clusters. By using maps with fishing fleet distribution in the South Kuril region we show that only vortices in formation stage satisfy vortex upwelling as they are lifting nutrients into the upper ocean layers. Cross-frontal flow of the jet stream like Oyashio may be consi­dered as another similar mechanism.
Keywords: sea surface temperature, absolute dynamic topography, saury, commercial clusters, Oyashio, South Kuril region, Pacific
Full text

References:

  1. BelonenkoT. V., SholeninovaP. V., Ob identifikatsii sinopticheskikh vikhrey po sputnikovym dannym na primere akvatorii severo-zapadnoy chasti Tikhogo okeana (On identification of mesoscale eddies from sa­tellite altimetry based on the area in the NW Pacific), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 5, pp. 79–90.
  2. BelonenkoT. V., KubrjakovA. A., StanichnyS. V., Spectral Characteristics of Rossby waves in the Northwestern Pacific based on satellite altimetry, Izvestiya, Atmospheric and Oceanic Physics, 2016, Vol. 52, Issue 9, pp. 920–928, DOI:10.1134/S0001433816090073.
  3. BulatovN. V., SamkoE. V., TsypyshevaI. L., Okeanologicheskiye obrazovaniya, blagopriyatnyye dlya kontsentratsii pelagicheskikh ryb po infrakrasnym dannym ISZ NOAA (Oceanological formations favorable for the concentration of pelagic fish by infrared data from the NOAA satellite), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Vol. 2, No. 5, pp. 49–61.
  4. Kozub P. K., Belonenko T. V., Zavisimost’ formirovaniya promyslovykh skoplenii sairy ot okeanologicheskikh uslovii v Yuzhno-Kuril’skom rayone po sputnikovym dannym (Dependence of Pacific saury fishing on oceanographic variables in the South Kuril area by satellite data), Uchenye zapiski RGGMU, 2017, No. 49, pp. 82–88.
  5. LaevastuT., HelaI., Fisheries oceanography, London: Fishing New Books Ltd, 1970, 238 p.
  6. NezlinM. V., Rossby solitons (Experimental investigations and laboratory model of natural vortices of the Jovian Great Red Spot type), Uspekhi fizicheskikh nauk, 1986, Vol. 29, pp. 807–842.
  7. NovikovYu. V., Usloviya obrazovaniya promyslovykh skopleniy sayry (Conditions for the formation of commercial saury clusters), Trudy VNIRO, 1966, Vol. 60, pp. 143–149.
  8. RodinA. V., Okeanologicheskiye protsessy i promyslovyye skopleniya pelagicheskikh ryb: Diss. doct. geogr. nauk (Oceanological processes and commercial accumulations of pelagic fishes. Dr. geogr. sci. thesis), Saint Petersburg, 2000, 59 p.
  9. RogachevK. A., GoginaL. V., Vikhri techeniya Oyyasio (Vortices of the Oyashio Current), Priroda, 2001, No. 12, pp. 36–42.
  10. Rogachev K. A., Gorin I. I., Perenos massy i dolgovremennaya evolyutsiya vikhrey Kamchatskogo teche­niya (Mass transfer and long-term evolution of vortices of the Kamchatka Current), Okeanologia, 2004, Vol. 4, No. 1, pp. 19–25.
  11. RogachevK. A., SalomatinA. S., YusupovV. I., KarmakE. K., Vnutrennyaya struktura antitsiklonicheskikh vikhrey Kuril’skogo techeniya (The internal structure of the anticyclonic eddies of the Kuril Current), Okeanologia, 1996, Vol. 36, No. 3, pp. 347–354.
  12. SamkoE. V., BulatovN. V., Issledovaniye svyazi mezhdu polozheniyem ringov Kurosio s teplym yadrom i raspredeleniyem rayonov promysla sayry po sputnikovym dannym (Investigation of the relationship between the situation of Kuroshio rings with a warm core and the distribution of saury fishing areas according to satellite data), Issledovaniye Zemli iz kosmosa, 2014, No. 2, pp. 18–26.
  13. SamkoE. V., BulatovN. V., KapshiterA. V., Dva tipa antitsiklonicheskikh vikhrey k vostoku ot Yaponii: proiskhozhdeniye, kharakteristiki, vliyaniye na promysel (Two types of anticyclonic vortices east of Japan: origin, characteristics, impact on the fishery), Izvestiya TINRO, 2008, Vol. 154, pp. 189–203.
  14. StaritsynD. K., FilatovV. N., FouxV. R., Osnovy ispol’zovaniya sputnikovoy al’timetricheskoy informatsii dlya otsenki usloviy formirovaniya promyslovykh skopleniy sayry (Fundamentals of the use of satellite altimetric information for estimating conditions for formation of commercial saury clusters), Izvestiya TINRO, 2004, Vol. 137, pp. 398–408.
  15. UstinovaE. I., FilatovV. N., KapshiterA. V., Monitoring gidrometeorologicheskikh usloviy Yuzhno-Kuril’skogo rayona v period sayrovoy putiny 2005 g. (Monitoring of hydrometeorological conditions of the Yuzhno-Kurilsky region during the cropland 2005), Voprosy promyslovoy okeanologii, 2007, Issue 4, No. 1, pp. 28–50.
  16. FilatovV. N., Migratsii i formirovaniye skopleniy massovykh pelagicheskikh gidrobiontov na primere tikho­okeanskoy sayry (Migrations and formation of accumulations of mass pelagic hydrobionts on the example of the Pacific saury), Rostov-on-Don, 2015, 168 p.
  17. ChangY.-L., MiyazawaY., OeyL.-Y., KodairaT., HuangS., The formation processes of phytoplankton growth and decline in mesoscale eddies in the western North Pacific Ocean, J. Geophys. Res. Oceans, 2017, Vol. 122, Issue 5. pp. 4444–4455, DOI:10.1002/2017JC012722.
  18. GaubeP., CheltonD. B., StruttonP. G., BehrenfeldM. J., Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies, J. Geophys. Res. Oceans, 2013, Vol. 118, Issue 12, pp. 6349–6370, DOI:10.1002/2013JC009027.
  19. GaubeP., McGillicuddyD. J. Jr., CheltonD. B., BehrenfeldM. J., StruttonP. G., Regional variations in the influence of mesoscale eddies on near-surface chlorophyll, J. Geophys. Res. Oceans, 2014, Vol. 119, Issue 12, pp. 8195–8220, DOI:10.1002/2014JC010111.
  20. HuangW. B., LoN. C. H., ChiuT. S., ChenC. S., Geographical Distribution and Abundance of Pacific Saury, Cololabis saira (Brevoort) (Scomberesocidae), Fishing Stocks in the Northwestern Pacific in Relation to Sea Temperatures, Zoological Studies, 2007, Vol. 46, Issue 6, pp. 705–716.
  21. KurodaH., YokouchiK., Interdecadal decrease in potential fishing areas for Pacific saury off the southeastern coast of Hokkaido, Japan, Fisheries Oceanography, Vol. 26, Issue 4, 2017, pp. 439–454.
  22. MahadevanA., ThomasL. N., TandonA., Comment on “eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms”, Science, 2008, Vol. 320, Issue 5875, p. 448, DOI:10.1126/science.1152111.
  23. NingX., PengX., LeF., HaoQ., SunJ., LiuC., CaiY., Nutrient limitation of phytoplankton in anticyclonic eddies of the northern South China Sea, Biogeosci. Discuss., 2008, Vol. 5, pp. 4591–4619, DOI:10.5194/bgd-5-4591-2008.
  24. PakG., ParkY.-H., VivierF., Bourdalle-BadieR., GarricG., ChangK.-I., Upper-ocean thermal variabi­lity controlled by ocean dynamics in the Kuroshio-Oyashio Extension region, J. Geophys. Res. Oceans, 2017, Vol. 122, Issue 2, pp. 1154–1176.
  25. RogachevK. A., Rapid thermohaline transition in the Pacific western subarctic and Oyashio fresh core eddies, J. Geophys. Res. Oceans, 2000, Vol. 105, Issue C4, pp. 8513–8526.
  26. SimonsR. D., NishimotoM. M., WashburnL., BrownK. S., SiegelD. A., Linking kinematic characteristics and high concentrations of small pelagic fish in a coastal mesoscale eddy, Deep-Sea Research Part I: Oceanographic Research Papers, 2015, Vol. 100, pp. 34–47, DOI:10.1016/j.dsr.2015.02.002.
  27. WilliamsR. G., FollowsM. J., Physical transport of nutrients and the maintenance of biological production, In: Ocean Biogeochemistry: The role of the ocean carbon cycle in global change, M. J.R. Fasham (ed.), Berlin: Springer, 2003, pp. 19–51, https://link.springer.com/book/10.1007%2F978-3-642-55844-3.
  28. ZhouW., XieS.-P., Intermodel Spread around the Kuroshio-Oyashio Extension Region in Coupled GCMs Caused by Meridional Variation of the Westerly Jet from Atmospheric GCMs, Journal of Climate, Vol. 30, Issue 12, 2017, pp. 4589–4599.