ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 29-41

Comparison of linear and nonlinear impacts to sea level variability based on satellite data

T.V. Belonenko 1 , N.V. Sandaliuk 1 
1 Saint Petersburg State University, Saint Petersburg, Russia
Accepted: 14.11.2017
DOI: 10.21046/2070-7401-2018-15-1-29-41
We compare the linear and nonlinear components in the equation of potential vortex conservation based on the altimeter satellite data. We apply the analysis for two regions of the World Ocean in the southern hemisphere. The first region is one of the most dynamically changing regions of the World Ocean and is located to the south of Cape Agulhas. The second area is located in the low latitudes of the Indian Ocean. We show that nonlinear effects predominate in the sea level of low-frequency variability in the regions. This result confirms the earlier conclusion that nearly all features isolated by the method of automatic identification in the sea level are nonlinear. Consequently, the criterion for determining the degree of nonlinearity of structures by comparing the maximum circumferential velocity of particles with the speed of feature displacement is a reliable indicator of nonlinearity.
Comparison of linear and nonlinear components of the two regions in Southern Hemisphere has shown that in low latitudes nonlinear effects differ from linear by the order of magnitude. However, these characteristics differ by two orders of magnitude for middle latitudes. We found that in the early studies based on altimetric data researches exaggerated the impact of Rossby waves for the low latitudes of Indian Oceans.
Keywords: sea level, altimetry, mesoscale eddies, Rossby waves, relative vorticity, Okubo-Weiss parameter, Southern Ocean, Indian Ocean, nonlinear parameter, SLA
Full text


  1. BelonenkoT. V., ZaharchukE. A., FuksV. R., Gradientno-vikhrevye volny v okeane (Planetary waves in the ocean), St. Petersburg: Izdatel’stvo Sankt-Peterburgskogo universiteta, 2004, 215 p.
  2. BelonenkoT. V., KoldunovA. V., FouxV. R., Advektsiya khlorofilla volnami Rossbi (Advecting of chlorophyll by Rossby waves), Vestnik SPbGU (Bulletin of St. Petersburg State University), 2011, Ser. 7, Vol. 4, pp. 106–109.
  3. BelonenkoT. V., SholeninovaP. V., Ob identifikatsii sinopticheskikh vikhrei po sputnikovym dannym na primere akvatorii severo-zapadnoi chasti Tikhogo okeana (On identification of mesoscale eddies from satellite altimetry based on the area in the NW Pacific), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 5, pp. 79–90.
  4. KonyaevK. V., SabininK. D., Volny vnutri okeana (Waves in the ocean), St. Petersburg: Gidrometeoizdat, 1992, 271 p.
  5. NezlinM. V., SnezhkinE. N., Vikhri Rossbi i spiral’nye struktury. Astrofizika i fizika plazmy v opytakh na melkoy vode (Rossby vortexes and spiral structures. Astrophysics and plasma physics in shallow water experiments), Moscow: Nauka, 1990, 237 p.
  6. PedloskyJ., Geophysical Fluid Dynamics, Vol. 1 (Russ. transl.), Moscow: Mir, 1984, 398 p.
  7. CharriaG., MélinF., DadouI., RadenacM.-H., GarçonV., Rossby wave and ocean color: The cells uplifting hypothesis in the South Atlantic Subtropical Convergence Zone, Geophysical Research Letters, 2003, Vol. 30, No. 3, 1125, DOI:10.1029/2002GL016390.
  8. CheltonD., SchlaxM., Global observations of oceanic Rossby waves, Science, 1996, Vol. 272, No. 5259, pp. 234–238.
  9. CheltonD. B., SchlaxM. G., SamelsonR. M., deSzoekeR. A., Global observations of large oceanic eddies, Geophysical Research Letters, 2007, Vol. 34, No. 15, L15606, DOI:10.1029/2007GL030812.
  10. CheltonD. B., SchlaxM. G., SamelsonR. M., Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 2011, Vol. 91, pp. 167–216.
  11. CipolliniP., CromwellD., JonesM. S., QuartlyG. D., ChallenorP. G., Concurrent altimeter and infrared observations of Rossby wave propagation near 34 N in the Northeast Atlantic, Geophys. Res. Lett., 1997, Vol 24 (8), pp. 889–892.
  12. CipolliniP., CromwellD., QuartlyG. D., ChallenorP. G., Remote sensing of oceanic extra-tropical Rossby waves, In: Halpern D. (ed.), Satellites, Oceanography and Society, Amsterdam, The Netherlands, Elsevier Sciences, 2000, pp. 99–123, (Elsevier Oceanography Series, 63, 367 p).
  13. CipolliniP., CromwellD., ChallenorP. G., RaffaglioS., Rossby waves detected in global ocean colour data, Geophysical Research Letters, 2001, Vol. 28, pp. 323−326.
  14. HillK. L., RobinsonI. S., CipolliniP., Propagation characteristics of extratropical planetary waves observed in the ASTR global sea surface temperature record, J. Geophys. Res., 2000, Vol. 105, pp. 21927–21945.
  15. KillworthP. D., CheltonD. B., deSzoekeR., The speed of observed and theoretical long extra-tropical planetary waves, J. Phys. Oceanogr., 1997, Vol. 27, pp. 1946–1966.
  16. SamelsonR. M., WigginsS., Lagrangian Transport in Geophysical Jets and Waves: The Dynamical Systems Approach, New York, Springer, 2006, 147 p.
  17. TullochR., MarshallJ., SmithK. S., Interpretation of the propagation of surface altimetric observations in terms of planetary waves and geostrophic turbulence, J. Geophys. Res., 2009, Vol. 114, C02005,
  18. VasavadaA. R., ShowmanA., Jovian atmospheric dynamics: An update after Galileo and Cassini, Reports on Progress in Physics, 2005, Vol. 68(8), pp. 1935–1996.