ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 28-41

Sea ice transformations in the Arctic from satellite observations

E.V. Shalina 1, 2 , L.P. Bobylev 1, 3 
1 Nansen International Environmental and Remote Sensing Centre, Saint Petersburg, Russia
2 St. Petersburg State University. Institute of Earth Sciences, Saint Petersburg, Russia
3 Nansen Environmental and Remote Sensing Center, Bergen, Norway
Accepted: 30.11.2017
DOI: 10.21046/2070-7401-2017-14-6-28-41
Satellite observations help to reveal critical polar sea ice changes. Passive microwave measurements have been used to estimate sea ice extent, the length of the sea ice season, sea ice velocities, and to determine the timing of the seasonal onset of melt in spring and freeze in autumn. Satellite data show that over the past 39 years Arctic sea ice cover has been declining by 4.5 percent per decade on the average, by 2.9 percent her decade in March, when the sea ice reaches its maximum extent, and by 11.3 percent per decade in September, the month that marks the end of the summer melt season. Revealed distribution of ice of different ages demonstrates the extensive loss in recent years of the older ice types. The proportion of sea ice five years or older has declined dramatically over the satellite time period, from more than 16 percent of the March ice in the 1980s to 1.2 percent in 2016. A growing percentage of Arctic sea ice is only one or two years old. Less old multiyear ice and increased area of first-year ice implies that the ice cover is thinning, which makes it more vulnerable to further melting. Since the beginning of satellite passive microwave data record, the length of the melt season for Arctic sea ice has grown, sea ice starts melting earlier by 5 days per decade and it starts refreezing later by 6–11 days per decade, on average.
Keywords: Arctic sea ice, satellite observations, passive microwave, sea ice extent, sea ice thickness, sea ice age, melt onset, freezeup, global warming
Full text


  1. Asmus V. V., Milekhin O.E, Krovotyncev V. A., Selivanov A. S., Ispol’zovanie radiolokacionnyh dannyh ISZ serii Okean dlya resheniya zadach gidrometeorologii I monitoring okruzayuschei sredy (Use of Ocean satellite data for hydrometeorology and environment monitoring), Issledovanie Zemli iz cosmosa, 2002, No. 3, pp. 63–70.
  2. Shalina E. V., Izmenenie ledovitosti severnyh morei Rossii I povyshenie dostupnosti Severnogo morskogo puti po dannym sputnokovogo monitoringa (Change of ice concentration in the Northern seas of the Russian Arctic and opening of the Northern Sea Route from satellite data), Issledovanie Zemli iz kosmosa, 2015, No. 4, pp. 67–78.
  3. Shalina E. V., Sokraschenie ledyanogo pokrova Arktiki po dannym sputnikovogo passivnogo mikrovolnovogo zondirovaniya (Arctic sea ice decline from satellite passive microwave observations), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 1, pp. 328–336.
  4. Aaboe S., Breivik L.-A., Sørensen A., Eastwood S., Lavergne Th. Global Sea Ice Edge and Type: Product User’s Manual. OSI-402-c and OSI-403-c, 2017, 43 p., URL:
  5. Alexeev V. A., Ivanov V. V., Kwok R., Smedsrud L. H., North Atlantic warming and declining volume of arctic sea ice, The Cryosphere Discuss, 2013, Vol. 7, pp. 245–265. DOI:10.5194/tcd-7-245-2013.
  6. Bekryaev R. V., Polyakov I. V., Alexeev V. A., Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming, J. Climate, 2010, Vol. 23, pp. 3888–3906.
  7. Breivik L.-A., Eastwood S., Upgrade of the OSI SAF sea ice edge and sea ice type products — Introduction of ASCAT: Tech. Rep., Norwegian Meteorological Institute, 2009.
  8. Cavalieri D. J., Parkinson C. L., Arctic sea ice variability and trends, 1979–2010, Cryosphere, 2012, Vol. 6, pp. 881–889. DOI:10.5194/tc-6-881-2012.
  9. Comiso J. C., A rapidly declining perennial sea ice cover in the Arctic, Geophysical Research Letters, 2002, Vol. 29, Issue 20, pp. 1956. DOI:10.1029/2002GL015650.
  10. Comiso J., Large decadal decline of the Arctic multiyear ice cover, J. Climate, 2012, Vol. 25, Issue 4, pp. 1176–1193. DOI:10.1175/JCLI-D-11-00113.1.
  11. Comiso J., Parkinson C. L., Gersten R., Stock L., Accelerated decline in the Arctic sea ice cover, Geophysical Research Letters, 2008, Vol. 35, Issue 1, p. L01703. DOI:10.1029/2007GL031972.
  12. Fowler C., Emery W., Maslanik J. A., Satellite-derived evolution of Arctic sea ice age: October 1978 to March 2003, IEEE Trans. Geoscience and Remote Sensing Letters, 2004, Vol. 1, Issue 2, pp. 71–74.
  13. Grenfell T. C., Surface-based passive microwave studies of multiyear sea ice, J. Geophysical Research, 1992, Vol. 97, Issue C3, pp. 3485–3501. DOI:10.1029/91JC02651.
  14. Hao G., Su J., A study of multiyear ice concentration retrieval algorithms using AMSR-E data, Acta Oceanologica Sinica, 2015, Vol. 34, Issue 9, pp. 102–109. DOI:10.1007/s13131-015-0656-1.
  15. Johannessen O. M., Kuzmina, S., Bobylev, L., Miles M., Surface air temperature variability and trends in the Arctic: new amplification assessment and regionalization, Tellus A, 2016, Vol. 68, p. 28234,
  16. Johannessen O. M., Shalina E. V., Miles M. W., Satellite evidence for an Arctic sea ice cover in transformation, Science, 1999, Vol. 286, pp. 1936–1938.
  17. Kwok R., Annual cycles of multiyear sea ice coverage of the Arctic Ocean: 1999–2003, J. Geophysical Research, 2004, Vol. 109, C11004. DOI:10.1029/2003JC002238.
  18. Kwok R., Near zero replenishment of the Arctic multiyear sea ice cover at the end of 2005 summer, Geophysical Research Letters, 2007, Vol. 34, L05501. DOI:10.1029/2006GL028737.
  19. Kwok R., Cunningham G. F., Variability of Arctic sea ice thickness and volume from CryoSat-2, Philosophical Transactions of the Royal Society, 2015, Vol. 373, Issue 2014, pp. 20140157–20140157, URL:
  20. Kwok R., Cunningham G. F., Wensnahan M., Rigor I., Zwally H. J., Yi D., Thinning and volume loss of the ArcticOcean sea ice cover: 2003–2008, J. Geophysical Research, 2009, Vol. 114, Issue C7, CiteID C07005. DOI:10.1029/2009JC005312.
  21. Kwok R., Spreen G., Pang S., Arctic sea ice circulation and drift speed: Decadal trends and ocean currents, J. Geophysical Research Oceans, 2013, Vol. 118, pp. 2408–2425. DOI:10.1002/jgrc.20191.
  22. Laxon S. W., Giles K. A., Ridout A. L., Wingham D. J., Willatt R., Cullen R., Kwok R., Schweiger A., Zhang J., Haas C., Hendricks S., Krishfield R., Kurtz N., Farrell S., Davidson M., CryoSat-2 estimates of Arctic sea ice thickness and volume, Geophysical Research Letters, 2013, Vol. 40, pp. 732–737. DOI:10.1002/grl.50193.
  23. Lee S.-M., Sohn B.-J., Kim S.-J., Differentiating between first-year and multiyear sea ice in the Arctic using microwave-retrieved ice emissivities, J. Geophysical Research Atmospheres, 2017, Vol. 122, pp. 5097–5112. DOI:10.1002/2016JD026275.
  24. Lindell D. B., Long D. G., Multiyear Arctic sea ice classification using OSCAT and QuikSCAT, IEEE Trans. Geosciences Remote Sensing, 2016, Vol. 54, pp. 167–175.
  25. Lu J., Cai M., Quantifying contributions to polar warming amplification in an idealized coupled general circulation model, Climate Dynamics, 2010, Vol. 34, pp. 669–687.
  26. Markus T., Stroeve J. C., Mille J., Recent changes in Arctic sea ice melt onset, freezeup, and melt season length, J. Geophysical Research, 2009, Vol. 114, Issue C12. DOI:10.1029/2009JC005436.
  27. Maslanik J. A., Fowler C., Stroeve J., Drobot S., Zwally J., Yi D., Emery W. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss, Geophysical Research Letters, 2007, Vol. 34. DOI:10.1029/2007GL032043.
  28. Meier W. N., Stroeve J., Fetterer F., Whither Arctic sea ice? A clear signal of decline regionally, seasonally and extending beyond the satellite record. Annals of Glaciology, 2007, Vol. 46, pp. 428–434. DOI:10.3189/172756407782871170.
  29. Nghiem S. V., Rigor I. G., Perovich D. K., Clemente-Colon P., Weatherly J. W., Neumann G., Rapid reduction of Arctic perennial sea ice, Geophysical. Research Letters. 2007. Vol. 34, Issue L19. DOI:10.1029/2007GL031138.
  30. Parkinson C. L., Spatially mapped reductions in the length of the Arctic sea ice season, Geophysical Research Letters, 2014, Vol. 41, pp. 4316–4322. DOI:10.1002/2014GL060434.
  31. Parkinson C. L., Cavalieri D. J., Gloersen P., Zwally H. J., Comiso J. C., Arctic sea ice extents, areas, and trends, 1978–1996, J. Geophysical Research, 1999, Vol. 104, Issue C9, pp. 20837–20856. DOI:10.1029/1999JC900082.
  32. Parkinson C. L., Comiso J., On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm, Geophysical Research Letters, 2013, Vol. 40, pp. 1356–1361. DOI:10.1002/grl.50349, 2013.
  33. Pithan F., Mauritsen T., Arctic amplification dominated by temperature feedbacks in contemporary climate models, Nature Geoscience, 2014, Vol. 7, pp. 181–184.
  34. Polyakov I. V., Walsh J., Kwok R., Recent changes of arctic multiyear sea-ice coverage and the likely causes, Bulletin of the American Meteorological Society (BAMS), 2012. DOI:10.1175/BAMS-D-11-00070.1.
  35. Screen J. A., Francis J., Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability, Nature Climate Change, 2016, Vol. 6, pp. 856–860,
  36. Screen J. A., Simmonds I., The central role of diminishing sea ice in recent Arctic temperature amplification, Nature, 2010, Vol. 464, pp. 1334–1337.
  37. Serreze M. C., Barry R. G., Processes and impacts of Arctic amplification: A research synthesis, Global and Planetary Change, 2011, Vol. 77, pp. 85–96.
  38. Serreze M. C., Stroeve J., Arctic sea ice trends, variability and implications for seasonal ice forecasting, Philosophical Transactions of the Royal Society A, 2015, Vol. 373, p. 20140159.
  39. Shalina E. V., Johannessen O. M., Multiyear sea ice concentration mapping using passive and active microwave satellite data, IEEE Xplore, Microwave Radiometry and Remote Sensing of the Environment (MicroRad 2008). 2008. DOI:10.1109/MICRAD.2008.4579513.
  40. Stroeve J., Serezze M., Drobot S., Gearheard S., Holland M., Maslanik J., Meier W., Scambos T., Arctic sea ice extent plummets in 2007, EOS Trans. American Geophysical Union, 2008, Vol. 89, pp. 13–20.
  41. Stroeve J. C., Markus T., Boisvert L., Miller J., Barrett A. Changes in Arctic melt season and implications for sea ice loss, Geophysical Research Letters, 2014, Vol. 41, pp. 1216–1225. DOI:10.1002/2013GL058951.
  42. Stroeve J. C., Serreze M. C., Holland M. M., Kay J. E., Maslanik J., Barrett A. P. The Arctic’s rapidly shrinking sea ice cover: a research synthesis, Climatic Change, 2012, Vol. 110, Issue 3-4, pp. 1005–1027. DOI:10.1007/s10584-011-0101-1.
  43. Svendsen E., Kloster K., Farrelly B., Johannessen O. M., Johannessen J. A., Campbell W. J., Gloersen P., Cavalieri D. J., Matzler C., Norwegian Remote Sensing Experiment: Evaluation of the Nimbus-7 SMMR for sea ice research, J. Geophysical Research, 1983, Vol. 88, Issue C5, pp. 2781–2791.
  44. Swan A. M., Long D. G., Multiyear arctic sea ice classification using QuikSCAT, IEEE Trans. Geosciences Remote Sensing, 2012, Vol. 50, pp. 3317–3326.
  45. Taylor P. K., Katsaros K. B., Lipes R. G., Determinations by Seasat of atmospheric water and synoptic fronts, Nature, 1981, Vol. 294, pp.737–739. DOI:10.1038/294737a0.
  46. Tilling R. L., Ridout A., Shepherd A. Near-real-time Arctic sea ice thickness and volume from CryoSat-2, The Cryosphere, 2016, Vol. 10, pp. 2003–2012,
  47. Tilling R. L., Ridout A., Shepherd A., Wingham D. J., Increased Arctic sea ice volume after anomalously low melting in 2013, Nature Geoscience, 2015, Vol. 8, pp. 643–646. DOI:10.1038/ngeo2489.
  48. Tschudi M., Fowler C., Maslanik J., Stewart J. S., Meier W. EASE-Grid Sea Ice Age, Version 3. Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center, 2016. DOI:
  49. Vinnikov K., Robock A., Stouffer R. J., Walsh J. E., Parkinson C. L., Cavalieri D. J., Mitchell J. F.B., Garrett D., Zakharov V. F., Global warming and Northern Hemisphere sea ice extent, Science, 1999. Vol. 286, pp. 1934–1937.
  50. Wang L. C., Brown D. R., Markus T., Recent changes in pan-Arctic melt onset from satellite passive microwave measurements, Geophysical Research Letters, 2013, Vol. 40, pp. 522–528. DOI:10.1002/grl.50098.
  51. Wang X., Key J., Kwok R., Zhang J., Comparison of Arctic Sea Ice Thickness from Satellites, Aircraft, and PIOMAS Data, Remote Sensing, 2016, Vol. 8, p. 713.