ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 9-27

Circulation of latent heat in the Earth’s atmosphere: an analysis of 15-year radiothermal satellite measurements

D.M. Ermakov 1, 2 , E.A. Sharkov 2 , A.P. Chernushich 1 
1 V.A. Kotelnikov Institute of Radioengineering and Electronics RAS, Fryazino Dept., Fryazino, Moscow Region, Russia
2 Space Research Institute RAS, Moscow, Russia
Accepted: 08.12.2017
DOI: 10.21046/2070-7401-2017-14-6-9-27
With the aid of the previously developed approach of satellite radiothermovision, satellite radiometric measurements of the Earth in a continuous observation interval from 2003 to 2017 were analyzed. About 22 000 pairs of synchronous fields of the global coverage of the atmospheric total precipitable water and of the water vapor advection rates were constructed with 6-hour time step on a regular grid with a sampling of 0.25°. The obtained dynamic description of the atmosphere made it possible to study the characteristics of atmospheric circulation in terms of latent heat fluxes at climatically significant scales. The calculated characteristic parameters of the circulation are basically in good qualitative and quantitative agreement with the known data. The zonal circulation structure was clearly identified, obtained were the typical values of latitudinal distributions of advection velocities, positions and seasonal migration of the borders of the Hadley cells, the average position of the thermal equator over the World Ocean, the average positive transfer of latent heat from the southern hemisphere to the northern one, diurnal and annual oscillations of the meridional and zonal fluxes of the latent heat, etc. It was noted that a number of problematic aspects of analysis requires improvement of the space-time details of the initial data series. It is principally achievable within the framework of multisensory satellite radiothermovision. The technical work on providing free access to the calculated advection fields via the geoportal of satellite radiothermovision is being completed.
Keywords: atmospheric circulation, advection of the latent heat, climate, big data, satellite radiothermovision
Full text

References:

  1. Basharinov A. E., Gurvich A. S., Egorov S. T., Radioizluchenie Zemli kak planety (The radio emission of the Earth as a planet), Moscow: Nauka, 1974, 188 p.
  2. Blinova E. N., Obschaya tsirkulyatsiya atmosfery i gidrodinamicheskiy dolgosrochnyy prognoz pogody (The general circulation of the atmosphere and a hydrodynamic long-term weather forecast), Trudy GMTs, 1967, Issue 15, pp. 3–26.
  3. Dymnikov V. P., Lykosov V. N., Volodin E. M., Galin V.Ya, Glazunov A. V., Gritsun A. S., Dianskiy N. A., Tolstyh M. A., Chavro A. I. Modelirovaniye klimata i ego izmeneniy (Modelling the climate and its changes), Sovremennye problemy vychislitel’noy matematiki i matematicheskogo modelirovaniya, Moscow: Nauka, 2005, Vol. 2, pp. 36–173.
  4. Ermakov D. M., Klimatologiya atmosfernyh rek: vozmozhnosti sputnikovogo radioteplovideniya (Climatology of atmospheric rivers: opportunities of satellite radiothermovision), VII Vserossiyskie Armandovskie chteniya : Sovremennye problemy distantsionnogo zondirovaniya, radiolokatsii, rasprostraneniya i difraktsii voln, Murom: MI VlGU, 2017, pp. 207–215. [Elektronny resurs] http://www.mivlgu.ru/conf/armand2017/rmdzs-2017/pdf/S2_19.pdf (30.10.2017).
  5. Ermakov D. M., Raev M. D., Chernushich A. P., Sharkov E. A., Problemy postroeniya radioteplovyh poley dostatochnoy odnorodnosti pri vysokom prostranstvennom razreshenii po sputnikovym izmereniyam (Problems of construction of radiothermal fields of sufficient uniformity at high spatial resolution by satellite measurements), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 1, pp. 24–33.
  6. Ermakov D. M., Raev M. D., Chernushich A. P., Sharkov E. A., Algoritm postroeniya global’nyh radioteplovyh poley sistemy okean-atmosfera vysokoy prostranstvenno-vremennoy diskretizatsii po sputnikovym mikrovolnovym izmereniyam (An algorithm for construction global ocean-atmosphere radiothermal fields with high spatiotemporal sampling by satellite microwave measurements), Issledovanie Zemli iz kosmosa, 2013, No. 4, pp. 72–82.
  7. Ermakov D. M., Chernushich A. P., Razvitie setevyh servisov geoportala sputnikovogo radioteplovideniya (Development of network services of the geoportal of satellite radiothermovision: ICAR project), Elektronnye biblioteki, 2017, Vol. 20, No. 1, pp. 50–76.
  8. Ermakov D. M., Chernushich A. P., Sharkov E. A., Shramkov Y. N. Vozmozhnosti postroeniya kratkosrochnyh global’nyh radioteplovyh izobrazheniy sistemy okean-atmosfera na baze programmnoy platformy Stream Handler (Opportunities to construct short-term global radiothermal images of the ocean-atmosphere system on the basis of the Stream Handler software platform), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 3, pp. 9–16.
  9. Ermakov D. M., Chernushich A. P., Sharkov E. A., Pokrovskaya I. V., Detalizatsiya faz razvitiya TTs Katrina po interpolirovannym global’nym polyam vodyanogo para (Detailing the phases of development of the TC Katrina by interpolated global water vapor fields), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 2, pp. 207–213.
  10. Ermakov D. M., Chernushich A. P., Sharkov E. A., Geoportal sputnikovogo radioteplovideniya: dannye, servisy, perspectivy razvitiya (Geoportal of satellite radiothermovision: data, services, prospects), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 3, pp. 46–57.
  11. Ermakov D. M., Sharkov E. A., Chernushich A. P., Otsenka troposfernyh advektivnyh potokov skrytogo tepla nad okeanom pri animatsionnom analize radioteplovyh dannyh sputnikovogo monitoringa (Evaluation of troposphere advective latent heat fluxes over oceans by animated analysis of satellite radiothermal remote data), Issledovanie Zemli iz kosmosa, 2014, No. 4, pp. 32–38.
  12. Ermakov D. M., Sharkov E. A., Chernushich A. P., Rol’ troposfernyh advektivnyh potokov skrytogo tepla v intensifikatsii tropicheskih tsiklonov (The role of tropospheric advection of latent heat in the intensification of tropical cyclones), Issledovanie Zemli iz kosmosa, 2014, No. 4, pp. 3–15.
  13. Ermakov D. M., Sharkov E. A., Chernushich A. P., Vozmozhnosti kolichestvennogo opisaniya mezomasshtabnyh protsessov v atmosfere na osnove animatsionnogo analiza (Possibility of quantitative description of mesoscale processes in the atmosphere based on the animated analysis), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 153–162.
  14. Ermakov D. M., Sharkov E. A., Chernushich A. P., Otsenka tochnosti interpolyatsionnoy shemy sputnikovogo radioteplovideniya (Assessment of the accuracy of the interpolation scheme of satellite radiothermovision), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 2, pp. 77–88.
  15. Ermakov D. M., Sharkov E. A., Chernushich A. P., Sputnikovoe radioteplovidenie na sinoptocheskih i klimaticheski znachimyh masshtabah (Satellite radiothermovision at synoptic and climatically significant scales), Issledovanie Zemli iz kosmosa, 2016, No. 5, pp. 3–9.
  16. Ermakov D. M., Sharkov E. A., Chernushich A. P., Analiz evolutsii sistemy vzaimodeystvuyuschih tayfunov s pomoschyu sputnikovogo radioteplovideniya (Analysis of a system of interacting typhoons with the aid of satellite readiothermovision), Issledovanie Zemli iz kosmosa, 2017, No. 2, pp. 77–87.
  17. Kutuza B. G., Danilychev M. V., Yakovlev O. I., Sputnikovyy monitoring Zemli: Mikrovolnovaya radiometriya atmosfery i poverhnosti (Satellite monitoring of the Earth: microwave radiometry of the atmosphere and the surface), Moscow: LENAND, 2016, 336 p.
  18. Lykosov V. N., Glazunov A. V., Kulyamin D. V., Mortikov E. V., Stepanenko V. M., Superkomp’yuternoe modelirovanie v fizike klimaticheskoy sistemy (Supercomputer modeling in the physics of a climatic system), Moscow, Izdatel’stvo MGU, 2012, 408 p.
  19. Radiophisicheskie issledovaniya atmosfery: Trudy Vsesoyuznogo simposiuma po radiofizicheskim issledovaniyam atmosfery (Radiophysical research of the atmosphere: Proceedings of the All-USSR symposium on radiophysical research of the atmosphere), Leningrad: Gidrometeoizdat, 1977, 296 p.
  20. Ruzmaykin A., Klimat kak igra sluchaya (Climate as a game of chance), Uspehi fizicheskih nauk, 2014, Vol. 184, pp. 297–311.
  21. Sterlyadkin V. V., Pashinov E. V., Kuz’min A. V., Sharkov E. A., Differentsial’nye radioteplovye metody vosstanovleniya profilya vlazhnosti atmosfery s borta kosmicheskih apparatov (Differential radio thermal methods of atmospheric humidity profile retrieving from spacecraft), Issledovanie Zemli iz kosmosa, 2017, No. 2, pp. 64–76.
  22. Haltiner Dzh.M. F., Dinamicheskaya i fizicheskaya meteorologiya (Dynamical and physical meteorology), Moscow, Inostrannaya literatura, 1960, 436 p.
  23. Sharkov E. A., Radioteplovoye distantsionnoye zondirovanie Zemli: fizicheskie osnovy (Radiothermal remote sensing of the Earth: physical foundations), Vol. 1, Moscow: IKI RAN, 2014, 544 p.
  24. Anandan P., A computational framework and an algorithm for the measurement of visual motion, International Journal of Computer Vision, 1989, Vol. 2, No. 3, P. 283–310.
  25. Armand N. A., Polyakov V. M., Radio propagation and remote sensing of the environment, CRC Press, 2004, 448 p.
  26. Barron J. L., Fleet D. J., Beauchemin S. S., Performance of optical flow techniques, International journal of computer vision, 1994, Vol. 12, No. 1, pp. 43–77.
  27. Blackwell W. J., A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data, IEEE Transactions on Geoscience and Remote Sensing, 2005, Vol. 43, No. 11, pp. 2535–2546.
  28. Climate change 2014: Synthesis report. IPCC, 2015. http://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_ru.pdf (30.10.2017).
  29. Ermakov D. M., Sharkov E. A., Chernushich A. P., Satellite radiothermovision of atmospheric mesoscale processes: case study of tropical cyclones, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences — ISPRS Archives, 2015, Vol. 40, No. 7/W3, pp. 179–186.
  30. Ermakov D. M., Sharkov E. A., Chernushich A. P., A multisensory algorithm of satellite radiothermovision, Izvestiya, Atmospheric and Oceanic Physics, 2016, Vol. 52, No. 9, pp. 1172–1180.
  31. Ermakov D. M., Sharkov E. A., Pokrovskaya I. V., Chernushich A. P., Revealing the energy sources of alternating intensity regimes of the evolving Alberto tropical cyclone using microwave satellite sensing data, Izvestiya, Atmospheric and Oceanic Physics, 2013, Vol. 49, No. 9, pp. 974–985.
  32. Horn B. K.P., Schunck B. G., Determining optical flow, Artificial Intelligence, 1981, Vol. 17, pp. 185–203.
  33. Kramer H. J., Observation of the Earth and its environment: Survey of missions and sensors, Berlin Heidelberg: Springer-Verlag, 2002, 1567 p.
  34. Lie W. T., Tang W., Estimating moisture transport over oceans using space-based observations, Journal of Geophysical Research, 2005, Vol. 110, No. D10, D10101, DOI:10.1029/2004JD005300.
  35. Madden R. A., Julian P. R., Observations of the 40-50-day tropical oscillation, Monthly weather review, 1994, Vol. 122, No. 5, pp. 814–837.
  36. Nerushev A. F., Kramchaninova E. K., Method for determining atmospheric motion characteristics using measurements on geostationary meteorological satellites, Izvestiya, Atmospheric and Oceanic Physics, 2011, Vol. 47, No. 9, pp. 1104–1113.
  37. Observing Systems Capability Analysis and Review Tool (OSCAR). WMO, 2011–2017. https://www.wmo-sat.info/oscar/ (30.10.2017).
  38. Palmén E., Newton C. W., Atmospheric circulation systems: Their structural and physical interpretation, New York: Academic Press, 1969, 603 p.
  39. Robertson F. R., Bosilovich M. G., Roberts J. B., Reichle R. H., Adler R., Ricciardully L., Berg W., Huffman G. J., Consistency of estimated global water cycle variations over the satellite era, Journal of Climate, 2014, Vol. 27, No. 16, pp. 6135–6154.
  40. Rodgers C. D., Inverse methods for atmospheric sounding: Theory and practice, World Scientific Publishing, 2000, 255 p.
  41. Velden C. S., Hayden C. M., Nieman S. J., Menzel W. P., Wanzong S., Goerss J. S., Upper-tropospheric winds derived from geostationary satellite water vapor observations, Bulletin of the American Meteorological Society, 1997, Vol. 78, No. 2, pp. 173–195.
  42. Wentz F. J., Hilburn K. A., Smith D. K., Remote Sensing Systems DMSP SSM/I, SSMIS daily environmental suite on 0.25 deg grid, Version 7, 8, Remote Sensing Systems, Santa Rosa, CA, 2012. Available online at www.remss.com/missions/ssmi.
  43. Wentz F. J., Ricciardulli L., Gentemann C., Meissner T., Hilburn K. A., Scott J., Remote Sensing Systems Coriolis WindSat daily environmental suite on 0.25 deg grid, Version 7.0.1 Remote Sensing Systems, Santa Rosa, CA, 2013, Available online at www.remss.com/missions/windsat.
  44. Wentz F. J., Meissner T., Gentemann C., Brewer M., Remote Sensing Systems AQUA AMSR-E daily environmental suite on 0.25 deg grid, Version 7, Remote Sensing Systems, Santa Rosa, CA, 2014, Available online at www.remss.com/missions/amsr.
  45. Wentz F. J., Meissner T., Gentemann C., Hilburn K. A., Scott J., Remote Sensing Systems GCOM-W1 AMSR2 daily environmental suite on 0.25 deg grid, Version 7.2, Remote Sensing Systems, Santa Rosa, CA, 2014, Available online at www.remss.com/missions/amsr.
  46. Wick G. A., Neiman P. J., Ralph F. M., Description and validation of an automated objective technique for identification and characterization of the integrated water vapor signature of atmospheric rivers, IEEE Transactions on Geoscience and Remote Sensing, 2013, Vol. 51, No. 4, pp. 2166–2176.
  47. Wimmers A. J., Velden C. S. Seamless advective blending of total precipitable water retrievals from polar orbiting satellites, Journal of Applied Meteorology and Climatology, 2011, Vol. 50, No. 5, pp. 1024–1036.