ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 108-136

Using remote sensing data to model water and heat regimes of rural territories

E.L. Muzylev 1 , Z.P. Startseva 1 , A.B. Uspensky 2 , E.V. Volkova 2 , E.V. Vasilenko 2 , A.V. Kukharsky 2 , A.M. Zeiliger 3 , O.S. Ermolaeva 3 
1 Water Problems Institute RAS, Moscow, Russia
2 State Research Center of Space Hydrometeorology “Planeta”, Moscow, Russia
3 Russian State Agrarian University - MTAA, Moscow, Russia
Accepted: 08.12.2017
DOI: 10.21046/2070-7401-2017-14-6-108-136
The paper presents the results of utilizing estimates of vegetation and meteorological characteristics obtained from measurements by radiometers AVHRR/NOAA (1997–2016), MODIS/EOS Terra and Aqua (2004–2016), SEVIRI/Meteosat-9, -10 (2009–2016), MSU-MR/Meteor-M No. 2 (2015–2016), and ASCAT/MetOp-B scatterometer (2014–2016) in physical-mathematical models of water and heat regime formation (SVAT and SWAP) for different agricultural areas for the vegetation season. The developed or refined methods and technologies of thematic processing satellite data and building above estimates are described. The estimated characteristics include normalized difference vegetation index NDVI, vegetation cover fraction B, leaf area index LAI, emissivity E, three types of land surface temperature (LST) (land-surface skin temperature Tg, air foliage temperature Ta, and efficient radiation temperature Ts.eff or Tls), precipitation as well as soil surface humidity. LAI and B are model parameters and LST and precipitation are input variables. Their values are introduced into the model. Using the SVAT model, soil water content W, evapotranspiration Ev, vertical heat and moisture fluxes and other water and heat regime characteristics have been calculated for 1997–2016 vegetation seasons. The error of the obtained estimates has been within the permissible limits. It has been also investigated whether the soil surface humidity estimates obtained from the ASCAT/MetOp-B scatterometer data can be used in the SVAT model to determine the initial and upper boundary conditions for the equation of vertical soil water transfer in the aeration zone of the soil layer.
SWAP and FAO 56 models have been used to evaluate the dynamics of soil water content of root-inhabited soil layer, the crop transpiration and the soil surface evaporation, as well as the water stress of agricultural cenosises and their water needs under different meteorological conditions for the 2012 vegetation season. The combination of satellite- and ground-based investigation results has made it possible to develop methodology for assessing the water efficiency of agricultural crop irrigation as well as technology for operational irrigation management.
The case study has been carried out for several territories located in the forest-steppe and steppe zones of Russia: the Seim River basin (Kursk region) with area of 7460 km2 (for 1997–2008 vegetation seasons); part of the Central Black Earth zone of the European Russia, including its 7 regions with total area of 227 300 km2 (for 2009–2016 vegetation seasons) and the Marx district of the Saratov region with area of about 700 km2 (for 2012 vegetation season).
Keywords: modeling, thematic processing satellite data, soil water content, evapotranspiration, transpiration, land surface temperature, precipitation, leaf area index, vegetation cover fraction, irrigation water efficiency, space-temporal analysis
Full text

References:

  1. Volkova E. V., Otsenki parametrov oblachnogo pokrova, osadkov i opasnykh yavlenii pogody po dannym radiometra AVHRR c MISZ serii NOAA kruglosutochno v avtomaticheskom rezhime (Automatic estimation of cloud cover and precipitation parameters obtained by AVHRR NOAA for day and night conditions), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 3, pp. 66–74.
  2. Volkova E. V., Opredelenie summ osadkov po dannym radiometrov SEVIRI/Meteosat-9,-10 i AVHRR/NOAA dlya Evropeiskoi territorii Rossii (Estimation of precipitation amount using SEVIRI/Meteosat-9 and AVHRR/NOAA data for the European territory of Russia), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 163–177.
  3. Volkova E. V., Opredelenie parametrov oblachnogo pokrova i osadkov po dannym MSU-MR s polyarno-orbital’nogo meteosputnika Meteor-M №2 dlya Evropeiskoi territorii Rossii (Estimation of cloudiness parameters and precipitation amount from data of MSU-MR established on board of polar-orbital meteorological satellite Meteor-M № 2 for the European territory of Russia), 14 Konferentsiya “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (14th Conference “Current problems in remote sensing of the Earth from space”), Book of abstracts, 2016, pp. 157.
  4. Volkova E. V., Uspenskii A. B., Otsenki parametrov oblachnogo pokrova po dannym geostatsionarnogo MISZ METEOSAT-9 kruglosutochno v avtomaticheskom rezhime (Estimation of cloud cover parameters from Meteosat-9 geostationary meteorological satellite data for day and night time), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 3, pp. 16–22.
  5. Volkova E. V., Uspenskii A. B., Kukharskii A. V., Spetsializirovannyi programmnyi kompleks polucheniya i validatsii sputnikovykh otsenok parametrov oblachnosti i osadkov (Specialized complex of programs for retrieving and validating satellite estimates of cloud and precipitation), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 3, pp. 7–26.
  6. Volkova E. V., Uspenskii S. A., Distantsionnoe opredelenie temperatury podstilayushchei poverkhnosti, prizemnoi temperatury vozdukha i effektivnoi temperatury po sputnikovym dannym dlya yuga Evropeiskoi territorii Rossii (Land surface, land air and effective temperature estimation for territories of Southern European Russia based on satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 5, pp. 291–303.
  7. Zeiliger A. M., Tochnoe (differentsirovannoe) oroshaemoe zemledelie — tekhnologiya povysheniya effektivnosti orosheniya i snizheniya nagruzki na okruzhayushchuyu sredu, Sbornik nauchnykh dokladov VIM, 2010, Vol. 2, pp. 633–638.
  8. Zeiliger A. M., Upravlenie oroshaemym zemledeliem po dannym nazemnogo i kosmicheskogo monitoringa, In: Upravlenie sel’khozpredpriyatiem s ispol’zovaniem kosmicheskikh sredstv navigatsii (GLONASS) i distantsionnogo zondirovaniya Zemli (Management of an agrarian enterprise using GLONASS and remote sensing techniques), M.: FGBOU RGAU-MSKhA imeni K. A. Timiryazeva, 2016.
  9. Zeiliger A. M., Ermolaeva O. S., Otsenka trendov degradatsii/progradatsii rastitel’nogo pokrova sel’skokhozyaistvennykh zemel’ s ispol’zovaniem dannykh DZZ, 12 Konf. “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (12th Conf. “Current problems in remote sensing of the Earth from space”), Book of abstracts, 2014, p. 362.
  10. Zeiliger A. M., Ermolaeva O. S., Otsenka effektivnosti ispol’zovaniya polivnoi vody posevami sel’skokhozyaistvennykh kul’tur s ispol’zovaniem modeli SEBAL, 12 Konf. “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (12th Conf. “Current problems in remote sensing of the Earth from space”), Book of abstracts, 2014. p. 363.
  11. Zeiliger A. M., Ermolaeva O. S., Rezul’taty analiza naborov dannykh MOD16 ET za 2000-2009 gody dlya territorii Pallasovskogo raiona Volgogradskoi oblasti RF, 13 Konf. “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (13th Conf. “Current problems in remote sensing of the Earth from space”), Book of abstracts, 2015, p. 400.
  12. Zeiliger A. M., Ermolaeva O. S., Rezul’taty komp’yuternogo modelirovaniya vodnogo stressa posevov oroshaemoi lyutserny po dannym nazemnogo meteorologicheskogo i kosmicheskogo monitoringa temperatury podstilayushchego sloya s ispol’zovaniem FAO-56 i modeli SEBS, Ekologiya. Ekonomika. Informatika: Sbornik statei v 2 t., T. 2, Geoinformatsionnye tekhnologii i kosmicheskii monitoring (Ecology. Economy. Informatics: Collected works. Vol. 2: Geoinformation technologies and space monitoring), Rostov-na-Donu: Izd-vo Yuzhnogo federal’nogo universiteta, 2016, pp. 258–273.
  13. Zeiliger A. M., Ermolaeva O. S., Informatsionnye tekhnologii v monitoringe bogarnykh i oroshaemykh agrotsenozov, Sovremennye naukoemkie tekhnologii, 2016, No. 10 (chast’ 1), pp. 62–66.
  14. Zeiliger A. M., Ermolaeva O. S., Analiz rezhima vodnogo stressa oroshaemykh agrotsenozov s ispol’zovaniem dannykh kosmicheskogo monitoringa agrogidrologicheskikh modelei AquaCrop i SWAP, 14 Konf. “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (14th Conf. “Current problems in remote sensing of the Earth from space”), Book of abstracts, 2016, p. 352.
  15. Zeiliger A. M., Ermolaeva O. S., Komp’yuternyi kod otsenki evapotranspiratsii agrotsenozov po dannym DZZ, 14 Konf. “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (14th Conf. “Current problems in remote sensing of the Earth from space”), Book of abstracts, 2016, p. 353.
  16. Zeiliger A. M., Ermolaeva O. S., Krichevtsova A. N., Rezul’taty prostranstvenno-vremennogo analiza naborov dannykh DZZ po ispareniyu s poverkhnosti sushi MOD16 ET za 2000-2009 gody dlya territorii Pallasovskogo raiona Volgogradskoi oblasti RF, Ekologiya. Ekonomika. Informatika: Sbornik statei v 3 t. T. 3: Geoinformatsionnye tekhnologii i kosmicheskii monitoring (Ecology. Economy. Informatics: Collected works, Vol. 3: Geoinformation technologies and space monitoring), Rostov-na-Donu: Izd-vo Yuzhnogo federal’nogo universiteta, 2015, pp. 35–48.
  17. Zeiliger A. M., Tuluzakov M. L., Elektromagnitnyi induktometr dlya vertikal’nogo profilirovaniya vlagozapasov pochvenno-gruntovoi tolshchi, Prirodoobustroistvo, 2013, No. 4, pp. 36–40.
  18. Zeiliger A. M., Fartukov V. A., Kositsyn A. V., Rezul’taty polevykh eksperimentov po testirovaniyu tekhnologii differentsirovannogo dozhdevaniya posevov sel’skokhozyaistvennykh kul’tur, Sbornik nauchnykh dokladov VIM, 2012, Vol. 2, pp. 430–434.
  19. Kuchment L. S., Motovilov Yu.G., Startseva Z. P., Modelirovanie vlagoperenosa v sisteme pochva-rastitel’nost’-prizemnyi sloi atmosfery dlya gidrologicheskikh zadach (Modeling water transfer in the “soil-vegetation-surface layer of atmosphere” system for hydrological goals), Vodnye resursy, 1989, No. 2, pp. 32–39.
  20. Muzylev E. L., Uspenskii A. B., Volkova E. V., Startseva Z. P., Ispolzovanie sputnikovoi informatsii pri modelirovanii vertikalnogo teplo- i vlagoperenosa dlya rechnykh vodosborov (Using Satellite Information for Modeling Heat and Moisture Transfer in River Watersheds), Issledovanie Zemli iz kosmosa, 2005, No. 4, pp. 35–44.
  21. Muzylev E. L., Uspenskii A. B., Startseva Z. P., Volkova E. V., Modelirovanie gidrologicheskogo tsicla rechnykh vodosborov s ispol’zovaniem sinkhronnoi sputnikovoi informatsii vysokogo razresheniya (Simulation of Hydrological Cycle of River Basins Using Synchronous High Resolution Satellite Data), Meteorologiya i gidrologiya, 2002, No. 5, pp. 68-82.
  22. Muzylev E. L., Uspenskii A. B., Startseva Z. P., Volkova E. V., Kukharskii A. V., Modelirovanie sostavlyayushchikh vodnogo i teplovogo balansov dlya rechnogo vodosbora c ispol’zovaniem sputnikovykh dannykh o kharakteristikakh podstilayushchei poverkhnosti (Modeling water and heat balance components for the river basin using remote sensing data on underlying surface characteristics), Meteorologiya i gidrologiya, 2010, No. 3, pp. 118–133.
  23. Muzylev E. L., Uspenskii A. B., Startseva Z. P., Volkova E. V., Kukharskii A. V., Uspenskii S. A., Ispol’zovanie dannykh distantsionnogo zondirovaniya pri modelirovanii komponent vodnogo i teplovogo balansov territorii Tsentral’no-Chernozemnykh oblastei Rossii (Utilization of remote sensing data for modeling water and heat balance components of the Russian Central Black Earth Region territory), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 6, pp. 17–34.
  24. Muzylev E. L., Startseva Z. P., Uspenskii A. B., Vasilenko E. V., Volkova E. V., Kukharskii A. V., Ispol’zovanie sputnikovykh dannykh o kharakteristikakh rastitel’nogo pokrova, meteorologicheskikh kharakteristikakh i vlazhnosti poverkhnosti pochvy v modeli formirovaniya vodnogo i teplovogo rezhimov obshirnoi territorii sel’skokhozyaistvennogo naznacheniya (Utilization of remote sensing data on characteristics of vegetation cover, meteorological characteristics and soil surface humidity in the model of water and heat regimes formation for territory of large agricultural region), 14th konf. “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa”, (14th Conference “Current problems in remote sensing of the Earth from space”), Book of abstracts, Moskva, IKI RAN, 14–18 noyabrya 2016, p. 363.
  25. Solov’ev V. I., Uspenskii S. A., Monitoring temperatury poverkhnosti sushi po dannym geostatsionarnykh meteorologicheskikh sputnikov novogo pokoleniya (Monitoring of Land Surface Temperatures Based on Second Generation Geostationary Meteorological Satellites), Issledovanie Zemli iz kosmosa, 2009, No. 3, pp. 79–89.
  26. Solov’ev V. I., Uspenskii A. B., Uspenskii S. A., Opredelenie temperatury zemnoi poverkhnosti po dannym izmerenii ukhodyashchego teplovogo izlucheniya s geostatsionarnykh meteorologicheskikh ISZ (Derivation of Land Surface Temperature Using Measurements of IR Radiances from Geostationary Meteorological Satellites), Meteorologiya i gidrologiya, 2010, No. 3, pp. 5–17.
  27. Solov’ev V. I., Uspenskii S. A., Uspenskii A. B., Razvitie metodov monitoringa temperatury poverkhnosti sushi po dannym geostatsionarnykh sputnikov novogo pokoleniya (Monitoring of land surface temperatures based on data from new generation geostationary satellites), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010b, Vol.7, No. 2, pp. 67-74.
  28. Uspenskii A. B., Ob otsenke temperatury poverkhnosti sushi po dannym sputnikovykh izmerenii ukhodyashchego IK izlucheniya v diapazone 10.5–12.5 mkm (On the assessment of land surface temperature from satellite measurements of outgoing IR radiation in the range 10.5-12.5 µm), Meteorologiya i gidrologiya, 1992, No. 10, pp. 19–27.
  29. Uspenskii A. B., Shcherbina G. I., Otsenka temperatury i izluchatel’noi sposobnosti poverkhnosti sushi po dannym izmerenii ukhodyashchego teplovogo izlucheniya s ISZ NOAA (Assessment of land surface temperature and emissivity from NOAA satellite measurement data on outgoing heat radiation), Issledovanie Zemli iz kosmosa, 1996, No. 5, pp. 4–13.
  30. Uspenskii S. A., Uspenskii A. B., Rublev A. N., Analiz vozmozhnosti monitoringa pripoverkhnostnoi temperatury vozdukha po dannym geostatsionarnykh meteorologicheskikh sputnikov (Analysis of Land Air Temperature Mapping Capabilities with Geostationary Satellite Data), Mezhdunarodnyi simpozium “Atmosfernaya radiatsiya i dinamika” (Int. Symp. “Atmospheric radiation and dynamics”), Book of Abstracts, St. Petersburg: Izd-vo SPbGU, 2011, pp. 37–38.
  31. Anderson R. G., Lo M.-H., Swenson S., Famiglietti J. S., Tang Q., Skaggs T. H., Lin Y.-H., Wu R.-J., Using satellite-based estimates of evapotranspiration and groundwater changes to determine anthropogenic water fluxes in land surface models, Geoscientific Model Development, 2015, Vol. 8, pp. 3021–3031.
  32. Andreassian V., Bergström S., Chahinian N., Duan Q., Gusev Y. M., Litllewood I., Machevet T., Michel C., Montanary A., Moretti G., Moussa R., Nasonova O. N., O’Connor K., Paquet E., Perrin C., Rousseau A., Schaake J., Wagener T., Xie Z., Catalogue of the models used in MOPEX 2004/2005, Large Sample Basin Experiments for Hydrological Model Parameterization: Results of the Model Parameter Experiment — MOPEX, IAHS Publ., No. 307, 2006, pp. 41–93.
  33. Bahir M., Boulet G., Olioso A., Rivalland V., Gallego-Elvira B., Mira M., Rodriguez J.-C., Jarlan L., Merlin O., Evaluation and Aggregation Properties of Thermal Infra-Red-Based Evapotranspiration Algorithms from 100 m to the km Scale over a Semi-Arid Irrigated Agricultural Area, Remote Sensing, 2017, Vol. 9, p. 1178.
  34. Bastiaanssen W. G. M., Menenti M., Feddes R. A., Holtslag A. A. M., The Surface Energy Balance Algorithm for Land (SEBAL): Part 1, Formulation, J. Hydrology, 1998, Vol. 212-213, pp. 198–212.
  35. Bastiaanssen W. G. M., Noordman E. J. M., Pelgrum H., Davids G., Thoreson B. P., Allen R. G., SEBAL model with remotely sensed data to improve water resources management under actual field conditions, Journal of Irrigation and Drainage Engineering, 2005, Vol. 131, No. 1, pp. 85–93.
  36. Becker F., Li Z.-L., Surface temperature and emissivity at various scales: definition, measurement and related problems, Remote Sensing Rev., 1995, Vol. 12, pp. 225–253.
  37. Bezerra B. G., Silva B. B., Santos C. A.C., Bezerra J. R.C., Actual evapotranspiration estimation using remote sensing: comparison of SEBAL and SSEB approaches, Advanced Remote Sensing, 2015, Vol. 4, No. 3, pp. 234–247.
  38. Biftu G. F., Gan T. Y., Semi-distributed, physically based, hydrologic modeling of the Paddle River basin, Alberta, using remotely sensed data, Journal of Hydrology, 2001, Vol. 244, pp. 137–156.
  39. Biospheric Aspects of the Hydrological Cycle (BAHS), Report No. 27, Institut fűr Meteorologie, Freie Universitat Berlin, Germany, 1993, 103 p.
  40. Ceron C. N., Melesse A. M., Price R., Dessu S. B., Kandel H. P., Operational actual wetland evapotranspiration estimation for South Florida using MODIS imagery, Remote Sensing, 2015, Vol. 7, pp. 3613–3632.
  41. Chen J. M., Chen X., Ju W., Geng X., Distributed hydrological model for mapping evapotranspiration using remote sensing inputs, J. Hydrology, 2005, Vol. 305, No. 1, pp. 15–39.
  42. Diarra A., Jarlan L., Er-Raki S., Le Page M., Aouade G., Tavernier A., Boulet G., Ezzahar J., Merlin O., Khabba S., Performance of the two-source energy budget (TSEB) model for the monitoring of evapotranspiration over irrigated annual crops in North Africa, Agricultural Water Management, 2017, Vol. 193, pp. 71–88.
  43. Elhaddad A., Garcia A, Chavez J. L., Using a surface energy balance model to calculate spatially distributed actual evapotranspiration, Journal of Irrigation and Drainage Engineering, 2011, Vol. 137, No. 1, pp. 17–26.
  44. Faysash A., Smith E. A., Simultaneous Retrieval of Diurnal to Seasonal Surface Temperatures and Emissivities over SGP ARM-CART Site Using GOES Split Window, J. Applied Meteorology, 2000, Vol. 39, pp. 971–982.
  45. French A. N., Hunsaker D. J., Thorp K. R., Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models, Remote Sensing of Environment, 2015, Vol.158, pp. 281-294.
  46. Gelfan A., Muzylev E., Uspensky A., Startseva Z., Romanov P., Remote Sensing Based Modeling of Water and Heat Regimes in a Vast Agricultural Region, Remote Sensing — Application, InTech — Open Access Publisher, Rijeka, Croatia, 2012, Chapter 6, pp. 141–176.
  47. Good E., Blending in situ and satellite data for monitoring land air temperatures, Proc. Meteorological Satellite Conference, Bath, UK, 21–25 September 2009, 2009. 5 p.
  48. Goodrich D. C., Scott R., Qic J., Goff B, Unkrich C. L., Morana M. S., Williams D., Schaeffer S., Snyder K., MacNish R., Maddock T., Pool D., Chehbouni A., Cooper D. I., Eichinger W. E., Shuttleworth W. J., Kerri Y., Marsett R., Ni W., Seasonal estimates of riparian evapotranspiration using remote and in situ measurements, Agricultural and Forest Meteorology, 2000, Vol. 105, pp. 281–309.
  49. Gowda P. H., Chavez J. L., Colaizzi P. D., Evette S. R., Howell T. A., Tolk J. A., ET mapping for agricultural water management: present status and challenges, Irrigation Science, 2008, Vol. 26, pp. 223–237.
  50. Karimi P., Bastiaanssen W. G.M., Spatial evapotranspiration, rainfall and land use data in water accounting — Part 1: Review of the accuracy of the remote sensing data, Hydrology and Earth System Sciences, 2015, Vol. 19, pp. 507–532.
  51. Khanbilvardi R., Lakhankar T., Krakauer N., Nazari R., Powell A., Remote sensing data and information for hydrological monitoring and modeling, Handbook of Engineering Hydrology: Modeling, Climate Change, and Variability, CRC Press, Taylor and Francis Group, 2014, Chapter 24, pp. 503–517.
  52. Kuchment L. S., Startseva Z. P., Sensitivity of evapotranspiration and soil moisture in wheat fields to changes in climate and direct effects of carbon dioxide, Hydrological Sciences J., 1990, Vol. 36, No. 6, pp. 631–643.
  53. Leng P., Li Z.-L., Duan S.-B., Gao M.-F., Huo H.-Y., A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data, ISPRS Journal of Photogrammetry and Remote Sensing, 2017, Vol. 131, pp. 40–51.
  54. Liou Y.-A., Kar S. K., Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms — A Review, Energies, 2014, Vol. 7, pp. 2821–2849.
  55. Moehrlen C., Literature review of current used SVAT models, Internal Report 04-99, Department of Civil & Environmental Engineering, University College Cork, Ireland, 1999, 22 p.
  56. Muzylev E. L., Startseva Z. P., Uspensky A. B., Volkova E. V., Utilization of AVHRR/NOAA based land surface temperatures in modeling the hydrological cycle of river basins, Proc. Intern. Rad. Symp. (IRS-2000), 24–29.07.2000, St. Petersburg, A. Deepak Publishing, Hampton, Virginia, USA, 2001, pp. 40–44.
  57. Muzylev E., Startseva Z.,Uspensky A.,Volkova E., Vasilenko E., Kukharsky A., Using satellite data on meteorological and vegetation characteristics and soil surface humidity in the Land Surface Model for the vast territory of agricultural destination, Geophysical Research Abstracts, EGU General Assembly, Vienna, Austria, 24–28 April 2017, Vol. 19, p. 12725.
  58. Overgaard J., Rosbjerg D., Butts M. B., Land-surface modeling in hydrological perspective — a review, Biogeosciences, 2006, Vol. 3, pp. 229–241.
  59. Pitman A. J., The evolution of, and revolution in, land surface schemes designed for climate models, Int. J. Climatology, 2003, Vol. 3, pp. 479–510.
  60. Product User Manual, Land Surface Temperature (PUM LST), LSA SAF, SAF/LAND/IM/PUM_LST/2.1, 2008, 49 p.
  61. Rwasoka D.T, Gumindoga W., Gwenzi J., Estimation of actual evapotranspiration using the surface energy balance system (SEBS) algorithm in the Upper Manyame catchment in Zimbabwe, Physics and Chemistry of the Earth, Parts A/B/C, 2011, Vol. 36, No. 14-15, pp. 736–746.
  62. Serban C., Maftei C., Barbulescu A., Assessment of evapotranspiration using remote sensing data and grid computing and application, WSEAS Transactions on Computers, 2010, Vol. 9, No. 11, pp. 1245–1254.
  63. Startseva Z., Muzylev E., Volkova E., Uspensky A., Uspensky S., Water and heat regimes modelling for a vast territory using remote-sensing data, International Journal of Remote Sensing, 2014, Vol. 35, No. 15, pp. 5775–5799.
  64. Su H., McCabe M., Wood E., Su Z., Prueger J., Modeling evapotranspiration during SMACEX: Comparing two approaches for local-and regional-scale prediction, Journal of Hydrometeorology, 2005, Vol. 6, No. 6, pp. 910–922.
  65. Taconet O., Bernard L., Vidal-Madjar D., Evapotranspiration over agricultural region using a surface flux/temperature model based on NOAA-AVHRR data, J. Applied Meteorology and Climatology, 1986, V. 25, No. 3, pp. 284–307.
  66. Uspensky A. B., Shcherbina G. I., Derivation of land surface temperatures and emissivities from satellite IR window measurements, Advances in Space Research, 1998, Vol. 21, No. 3, pp. 433–437.
  67. Valor E., Caselles V., Mapping land surface emissivity from NDVI. Application to European, African, and South American areas, Remote Sensing of Environment, 1996, Vol. 57, pp. 167–184.
  68. Van de Griend A. A., Owe M., On the relationship between thermal emissivity and normalized vegetation index for natural surfaces, Intern. J. Remote Sensing, 1993, Vol. 14, No. 6, pp. 1119–1131.
  69. Wan Z., Dozier J., A generalized split-window algorithm for retrieving land surface temperature from space, IEEE Trans. Geosciences Remote Sensing, 1996, Vol. 34, No. 4, pp. 892–905.
  70. Xia T., Kustas W. P., Anderson M. C., Alfieri J. G., Gao F., McKee L., Prueger J. H., Geli H. M.E., Neale C. M.U., Sanchez L., Alsina M. M., Wang Z., Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one- and two-source modeling schemes, Hydrology and Earth System Sciences, 2016, Vol. 20, pp. 1523–1545.
  71. Zeyliger A. M., Ermolaeva O. S., SEBAL Model Using to Estimate Irrigation Water Efficiency & Water Requirement of Alfalfa Crop, Geophysical Research Abstracts, EGU General Assembly, Vienna, Austria, April 2013, Vol. 15, p. 12671.
  72. Zeyliger A. M., Ermolaeva O. S., Water Stress and Biomass Monitoring and SWAP Modeling of Irrigated Crops in Saratov Region of Russia, Geophysical Research Abstracts, EGU General Assembly, Vienna, Austria, April 2016, Vol. 18, p. 13486.
  73. Zeyliger A. M., Ermolaeva O. S., Management Strategies to Sustain Irrigated Agriculture with Combination of Remote Sensing, Weather Monitoring & Forecasting and SWAP Modeling, Geophysical Research Abstracts, EGU General Assembly, Vienna, Austria, April 2017, Vol. 19, p. 15422.