ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 42-55

Experience and results of a remote study of lakes in the permafrost zone of Western Siberia from satellite images of various resolutions over a 50-year period

Yu.M. Polishchuk 1, 2 , A.N. Bogdanov 1 , N.A. Bryksina 3 , V.Yu. Polishchuk 4, 5 , I.N. Muratov 1 , M.A. Kupriyanov 1 , O.A. Baisalyamova 1 , V.P. Dneprovskaya 2 
1 Ugra Research Institute of Information Technologies, Khanty-Mansiysk, Russia
2 Institute of Petroleum Chemistry SB RAS, Tomsk, Russia
3 Kant Baltic Federal University, Kaliningrad, Russia
4 Institute of Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, Russia
5 Tomsk Polytechnic University, Tomsk, Russia
Accepted: 01.12.2017
DOI: 10.21046/2070-7401-2017-14-6-42-55
The article is devoted to the use of satellite images of various spatial resolutions to obtain experimental data on temporal changes in the number and area of lakes in the permafrost zone of Western Siberia over a long period of time and their spatial size-distribution in the permafrost zone. Methodical issues of errors in the measurement of lake areas on mid-resolution images are discussed. Estimates of the influence of the intraseasonal dynamics of lake areas on the accuracy of remote measurement of lake sizes obtained with the use of radar images are given. On the basis of multi-temporal pairs of ultra-high resolution images, a decrease in average of lakes area and the limnicity of the permafrost zone of Western Siberia over a 50-year period was revealed. A synthesized histogram of the lake distribution in a wide range of their sizes was constructed using the Landsat-8 images and ultra-high resolution images of QuickBird, GeoEye-1 and Resurs-P, taking into account all the lakes in the permafrost zone — from the smallest to the largest sizes. For the construction of the histogram, data were obtained on the number and areas of small lakes from ultra-high resolution images at 37 test sites, located fairly evenly in the study area. The correspondence of the received empirical histogram to the lognormal distribution of lakes was established using the Pearson criterion. The values of the parameters of the lognormal law were determined from the experimental data.
Keywords: permafrost, geoinformation systems, satellite images, histogram of lakes size-distribution
Full text

References:

  1. Baisalyamova O. A., Bogdanov A. N., Muratov I. N., Polishchuk Y. M., Snigireva M. S., Prostranstvennoe raspredelenie malykh termokarstovykh ozer Zapadnoi Sibiri po snimkam KH-7 i GeoEye-1 (Spatial distribution of small thermokarst lakes of Western Siberia from the images of KH-7 and GeoEye-1), Vestnik YuGU, 2015, Issue 3, pp. 69–73.
  2. Bryksina N. A., Polishchuk Y. M., Analiz sezonnykh izmenenii ploshchadei termokarstovykh ozer v zone vechnoi merzloty Zapadnoi Sibiri s ispol’zovaniem snimkov ERS-2 (The analysis of seasonal dynamics of thermokarst lakes areas with use of space images ERS 2), Issledovanie Zemli iz kosmosa, 2009, No. 3, pp. 90–93.
  3. Bryksina N. A., Polishchuk Y. M., Issledovanie tochnosti distantsionnogo izmereniya ploshchadei ozer s ispol’zovaniem kosmicheskikh snimkov (Research of remote measurement accuracy of lake areas using space images), Geoinformatika, 2013, No. 1, pp. 64–68.
  4. Venttsel’ E. S., Ovcharov L. A., Teoriya veroyatnostei i ee inzhenernye prilozheniya (Probability theory and its engineering applications), Moscow: Vysshaya shkola, 2000, 480 p.
  5. Viktorov A. S., Kapranova V. N., Trapeznikova O. N., Matematicheskaya model’ morfologicheskoy struktury ozerno-termokarstovykh ravnin v izmenyayushchikhsya klimaticheskikh usloviyakh, (Mathematical model of the lacustrine-thermokarst plain morphostructure under the changing climatic conditions), Kriosfera Zemli, 2015, Vol. 19, No. 2, pp. 26–34.
  6. Dneprovskaya V. P., Bryksina N. A., Polishchuk Y. M., Izuchenie izmenenii termokarsta v zone preryvistogo rasprostraneniya vechnoi merzloty Zapadnoi Sibiri na osnove kosmicheskikh snimkov (Study of thermokarst changes in discontinuous zone of West-Siberian permafrost based on space images), Issledovanie Zemli iz kosmosa, 2009, No. 4, pp. 86–95.
  7. Kravtsova V. I., Rodionova T. V. Issledovanie dinamiki ploshchadi i kolichestva termokarstovykh ozer v razlichnykh raionakh kriolitozony Rossii po kosmicheskim snimkam (Investigation of the dynamics in area and number of thermokarst lakes in various regions of Russian cryolithozone, using satellite images), Kriosfera Zemli, 2016, Vol. 20, No. 1, pp. 81–89.
  8. Kremer N. S. Teoriya veroyatnostei i matematicheskaya statistika (Theory of Probability and Mathematical Statistics), Moscow: YuNITI-DANA, 2004, 573 p.
  9. Kupriyanov M. A., Polishchuk Y. M., Sharonov D. S., Issledovanie dinamiki chislennosti i razmerov termokarstovykh ozer v gornykh raionakh Altaya po kosmicheskim snimkam (The study of the thermokarst lakes amount and size dynamics in the highlands of Altai by satellite images), Problemy okruzhayushchei sredy i prirodnykh resursov, 2016, Vol. 19, No. 6, pp. 107–111.
  10. Polishchuk Y. M., Bogdanov A. N., Muratov I. N., Metodicheskie voprosy postroeniya obobshchennykh gistogramm raspredeleniya ploshchadei ozer v zone merzloty na osnove kosmicheskikh snimkov srednego i vysokogo razresheniya (Methodological issues of construction of generalized histograms of lake size-distribution in the permafrost based on the satellite images of middle and high resolution), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 6, pp. 224–232.
  11. Polishchuk Y. M., Kupriyanov M. A., Bryksina N. A., Distantsionnoe issledovanie dinamiki ploshchadi ozer v sploshnoi kriolitozone Sibiri (Remote study of lake area dynamics in the continuous cryolithozone of Siberia), Geografiya i prirodnye resursy, 2017, No. 3, pp. 164–170.
  12. Polishchuk Y. M., Polishchuk V.Yu., Bryksina N. A., Pokrovskiy O. S., Kirpotin S. N., Shirokova L. S. Metodicheskie voprosy otsenki zapasov metana v malykh termokarstovykh ozerakh v zone merzloty Zapadnoi Sibiri (Methodical issues of evaluating methane capacity in small thermokarst lakes of Western Siberia permafrost), Izvestiya Tomskogo politekhnicheskogo universiteta, 2015, Vol. 326, No. 2, pp. 127–135.
  13. Bryksina N. A., Polishchuk Y. M., Analiz izmeneniya chislennosti termokarstovykh ozer v zone merzloty Zapadnoy Sibiri na osnove kosmicheskikh snimkov (Analysis of changes in the number of thermokarst lakes in permafrost of Western Siberia on the basis of satellite images), Cryosphere of Earth, 2015, Vol. 19, No. 2, pp. 114‒120.
  14. Cael B. B., Seekell D. A., The size-distribution of Earth’s lakes, 2016, No. 6, Article number: 29633, DOI:10.1038/srep29633.
  15. Downing J. A., Prairie Y. T., The global abundance and size distribution of lakes, ponds, and impoundments, Limnology and Oceanography, 2006, Vol. 51, pp. 2388–2397.
  16. Holgerson M. A., Raymond P. A., Large contribution to inland water CO2 and CH4 emissions from very small ponds, Nature Geoscience Letters, 2016, Vol. 9, pp. 222–226.
  17. Karlsson J. M., Lyon S. W., Destouni G., Temporal behavior of lake size-distribution in a thawing permafrost landscape in Northwestern Siberia, Remote sensing, 2014, No. 6, pp. 621–636.
  18. Kirpotin S., Polishchuk Y., Zakharova E., Shirokova L., Pokrovsky O., Kolmakova M., Dupre B., One of possible mechanisms of thermokarst lakes drainage in West-Siberian North, International Journal of Environmental Studies, 2008, Vol. 65, No. 10, pp. 631–635.
  19. Pokrovsky O. S., Shirokova L. S., Kirpotin S. N., Audry S., Viers J., Dupre B., Effect of permafrost thawing on the organic carbon and metal speciation in thermokarst lakes of Western Siberia, Biogeosciences, 2011, Vol. 8, pp. 565–583.
  20. Polishchuk Y. M., Bogdanov A. N., Polishchuk V. Y., Manasypov R. M., Shirokova L. S., Kirpotin S. N., Pokrovsky O. S., Size distribution, surface coverage, water, carbon, and metal storage of thermokarst lakes in the permafrost zone of the Western Siberia lowland, Water, 2017, Vol. 9, Issue 3, 18 p.
  21. Polishchuk Yu., Kirpotin S., Bryksina N., Remote study of thermokarst lake dynamics in West-Siberian permafrost. Chapter 5, Permafrost: Distribution, Composition and Impacts on Infrastructure and Ecosystems, New York: Nova Science Publishers, 2014, pp. 173–204.
  22. Shiklomanov A. I., Lammers R. B., Lettermaier D. P., Polishchuk Y. M., Savichev O. G., Smith L. C., Hydrological Changes: Historical Analysis, Contemporary Status, and Future Projections, Regional Environmental Changes in Siberia and Their Global Consequences, Dordrecht — Heidelberg — New-York — London: Springer, 2013, pp. 111–154.
  23. Verpoorter C., Kutser T., Seekell D. A., Tranvik, L. J., A global inventory of lakes based on high resolution satellite imagery, Geophysical Research Letters, 2014, Vol. 41, pp. 1–7.