ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 7, pp. 210-224

Calculation of compacting sea ice cover by satellite images

A.I. Aleksanin 1, 2 , M.G. Aleksanina 1, 2 , A.Yu. Karnatsky 1 
1 Institute of Automation and Control Processes FEB RAS, Vladivostok, Russia
2 Far Eastern Federal University, Vladivostok, Russia
Accepted: 25.09.2017
DOI: 10.21046/2070-7401-2017-14-7-210-224
This paper describes a new method of automatic calculation of local indices of compacting and divergence of sea ice cover. The proposed approach is based on the calculation of ice drift velocities that are regarded as the velocities of marker displacements, determined using a sequence of images from meteorological satellites. The local index of compacting and divergence of sea ice cover is considered as the rate of change in the distance between individual elements of the sea ice cover. An approach to calculating the local indices of compacting and divergence is proposed. The local index of compacting and divergence is determined by two parameters: the scalar value of compacting/divergence and the direction of the axis of compacting/divergence. This approach allows estimation of the accuracy and statistical significance of the calculated parameters. The results of the proposed approach are presented on the example of ice cover of the Sea of Okhotsk in April 2010 near the port of Magadan. Velocities of the ice field drift were calculated using pairs of the MODIS radiometer satellite images with a spatial resolution of 250 m and a time interval of 24 h. It was shown that the proposed approach results correspond to visually observed parameters of compacting and divergence. A significant variation was marked between local estimates of compacting/divergence received for different sizes of the areas where ice cover drift was analyzed.
Keywords: satellite images, marker movement velocity, ice drift, ice compacting index, direction of ice compacting axis
Full text

References:

  1. Aleksanin A.I., Aleksanina M.G., Karnatskii A.Yu., Avtomaticheskii raschet skorostei peremeshchenii ledovykh polei (Automatic calculation of movement velocities of sea ice fields), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 2, pp. 9–17.
  2. Aleksanin A.I., Aleksanina M.G., Karnatskii A.Yu., Avtomaticheskii raschet skorostei poverkhnostnykh techenii okeana po posledovatel’nosti sputnikovykh izobrazhenii (Automatic computation of sea surface velocities on a sequence of satellite images), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 2, pp. 131–142.
  3. Appolonov E.M., Sazonov K.E., Bokatova E.A., O veroyatnosti zaklinivaniya sudov pri szhatii (On the probability of sticking of vessels under ice pressure), Mir transporta, 2012, Vol. 10, No. 4 (42), pp. 4–9.
  4. Asmus V.V., Krovotyntsev V.A., Pyatkin V.P., Kosmicheskii monitoring ledyanykh polei Arktiki i Antarktiki (Space monitoring of the Arctic and Antarctic ice fields), Interekspo Geo-Sibir, 2010, No. 3, pp. 153–160.
  5. Asmus V.V., Krovotyntsev V.A., Pyatkin V.P., Programmnye tekhnologii v kosmicheskom monitoringe ledyanogo pokrova Arktiki (Software Technologies in Satellite Monitoring of the Arctic Ice Cover), Zhurnal Sibirskogo Federal’nogo universiteta. Tekhnika i tekhnologii, 2015, Vol. 8, No. 6, pp. 680–689.
  6. Babich N.G., Vybor puti plavaniya vo l’dakh i otsenka rezul’tativnosti ispol’zovaniya dannykh navigatsionnoi ledovoi informatsii (Selecting Navigation Routes and Accessing Efficiency of Ice Navigation Data Application), Zemlya iz kosmosa, Vol. 10, pp. 28–33.
  7. Bukharov M.V., Mironova N.S., Ushcheko I.G., Kotilevskaya A.M., Losev V.M., Bukharov V.M., Raspoznavanie svoistv l’da v Okhotskom more po kartam indeksa rasseyaniya (Identification of ice properties in the Sea of Okhotsk using scattering index maps), Meteorologiya i gidrologiya, 2014, No. 4, pp. 56–67.
  8. Bychkova I.A., Zakhvatina N.Yu., Sovremennye sputnikovye metody obnaruzheniya i klassifikatsii ledyanogo pokrova arkticheskikh morei (Modern satellite methods for detection and classification of the ice cover of the Arctic seas), Rossiiskie polyarnye issledovaniya, 2014, No. 1 (15), pp. 27–31.
  9. Volkov V.A., Mushta A.V., Demchev D.M., Korzhikov A.Ya., Sandven S., Svyaz’ krupnomasshtabnoi izmenchivosti polya dreifa l’da v Severnom Ledovitom okeane s klimaticheskimi izmeneniyami obshchei ledovitosti, proiskhodyashchimi v techenie poslednikh desyatiletii (Relation of large-scale variations of the sea ice drift fields in the Arctic ocean with climatic changes of total ice concentrations during last decades), Problemy Arktiki i Antarktiki, 2016, No. 2, pp. 50–63.
  10. Gol’dshtein R.V., Osipenko N.M., Mekhanika razrusheniya i problemy osvoeniya Arktiki (Mechanics of destruction and problems of Arctic development), Arktika: ekologiya i ekonomika, 2015, Vol. 4, No. 20, pp. 14–27.
  11. Demchev D.M., Volkov V.A., Khmeleva V.C., Kazakov E.E., Vosstanovlenie polei dreifa morskogo l’da po posledovatel’nym sputnikovym radiolokatsionnym izobrazheniyam metodom proslezhivaniya osobykh tochek (Restoration of sea ice drift fields by successive satellite radar images using the method of tracing special points), Problemy Arktiki i Antarktiki, 2016, No. 3, pp. 5–19.
  12. Kassandrova O.N., Lebedev V.V., Obrabotka rezul’tatov nablyudenii (Treatment of Observation Results), Moscow: “Nauka”, 1970, 194 p.
  13. Klyachkin S.V., Gudkovich Z.M., Guzenko R.B., Otsenka ekstremal’nykh znachenii dreifa i szhatii l’da po rezul’tatam chislennogo modelirovaniya (Estimates of the extreme values of ice drift and pressure by the results of numerical modeling), Sovremennye problemy nauki i obrazovaniya, 2012, No. 4, available at: https://www.science-education.ru/ru/article/view?id=6706 (June 08, 2017).
  14. Klyachkin S.V., Gudkovich Z.M., Mai R.I., Frolov S.V., Szhatiya l’dov (Compression of ice), Opasnye ledovye yavleniya dlya sudokhodstva v Arktike (Dangerous ice phenomena for navigation in the Arctic), Saint Petersburg: AANII, 2010, pp. 33–91, 319 p.
  15. Klyachkin S.V., Guzenko R.B., Mai R.I., Chislennaya model’ evolyutsii ledyanogo pokrova arkticheskikh morei dlya operativnogo prognozirovaniya. (Numerical model of the ice cover evolution in Arctic Seas for the operational forecasting), Led i Sneg, 2015, Vol. 55, No. 3, pp. 83–96.
  16. Kulakov M.Yu., Makshtas A.P., Rol’ dreifa l’da v formirovanii ledyanogo pokrova Severnogo Ledovitogo okeana v nachale XXI veka (The role of ice drift in formation of sea ice cover in the Arctic ocean at the beginning of XXI centure), Problemy Arktiki i Antarktiki, 2013, No. 2 (96), pp. 67–75.
  17. Mastryukov S. I., Metodicheskii podkhod k otsenke ledovykh uslovii plavaniya i otsenka tendentsii ikh izmenenii na primere aziatskogo poberezh’ya Beringova morya (Methodical Approach to the Estimation of Ice Conditions of Navigation and Trends of Change as an Example of the Asian Coast of the Bering Sea), Arktika: ekologiya i ekonomika, 2014, No. 1, pp. 74–81.
  18. Pyatkin V.P., Salov G.I., Statisticheskii podkhod k zadache obnaruzheniya nekotorykh struktur na aerokosmicheskikh izobrazheniyakh (Statistical Approach to the Problem of Some Structures Detection in Aerospace Imagery), Naukoemkie tekhnologii, 2002, Vol. 3, No. 3, pp. 52–58.
  19. Sazonov K.E., Teoreticheskie osnovy plavaniya sudov vo l’dakh (Theoretical basis of ship navigation in ice), Saint Petersburg: TsNII im. akad. A.N. Krylova, 2010, 274 p.
  20. Smirnov V.G., Bushuev A.V., Zakhvatkina N.Yu., Loshchilov V.S., Sputnikovyi monitoring morskikh l’dov (Satellite monitoring of the sea ice), Problemy Arktiki i Antarktiki, 2010, Vol. 85, No. 2, No. 2 (85), pp. 62–76.
  21. Slivaev B.G., Podgotovka sudna k plavaniyu vo l’dakh (Preparation of the vessel for navigation in ice), Vladivostok: IPK MGU im. adm. G.I. Nevel’skogo, 2017, 67 p.
  22. Stepanyuk I.A., Smirnov V.N., Metody izmerenii kharakteristik dinamiki ledyanogo pokrova (Methods for measuring the characteristics of ice cover dynamics), Saint Petersburg: Gidrometeoizdat, 2001, 136 p.
  23. Opasnye ledovye yavleniya dlya sudokhodstva v Arktike (Ice Phenomena Threatening Arctic Shipping), Saint Petersburg: AANII, 2010, 319 p.
  24. Frolov S.V., Vliyanie orientatsii narushenii sploshnosti l’da na effektivnost’ dvizheniya sudov v Arkticheskom basseine v letnii period (Orientation of the leads and cracks in the ice cover relatively to direction of the ship movement is the most important characteristics of ice navigation in the Arctic basin), Problemy Arktiki i Antarktiki, 2013, No. 3, pp. 35–45.
  25. Bouillon S., Rampal P., On producing sea ice deformation dataset from SAR-derived sea ice motion, The Cryosphere Discuss., 2014, No. 8, pp. 5105–5135.
  26. Emery W.J., Thomas A.C., Collins M.J., Crawford W.R., Mackas D.L., An objective method for computing advective surface velocities from sequential infrared satellite images, J. Geophysical Research, 1986, Vol. 91, No. C11, pp. 12865–12878.
  27. Lavergne T., Eastwood S., Teffah Z., Schyberg H., Breivik L.-A., Sea ice motion from low-resolution satellite sensors: An alternative method and its validation in the Arctic., Journal of Geophysical Research, 2010, Vol. 115, C10032, pp. 1–14.
  28. Lindsay R., Zhang J, Rothrock D.A., Sea-ice deformation rates from satellite measurements and in a model, Atmosphere-Ocean, 2003, Vol. 41, No. 1, pp. 35–47.
  29. Lukovich J.V., Babb D.G., Galley R.J., Raddatz R.L., Barber D.G., On the characteristics of sea ice divergence/convergence in the Southern Beaufort Sea, The Cryosphere Discuss., 2014, No. 8, pp. 4281–4325.
  30. Rampal P., Bouillon S., Ólason E., Morlighem M., neXtSIM: a new Lagrangian sea ice model, < i>The Cryosphere, 2016, No. 10, pp. 1055–1073.
  31. Volkov V.A., Ivanov N.E., Demchev D.M., Application of a vectorial-algebraic method for investigation of spatial-temporal variability of sea ice drift and validation of model calculations in the Arctic Ocean, Journal of Operational Oceanography, 2012, Vol. 5, No. 2, pp. 61–71.
  32. Yu J., Yang Y., Liu A., Zhao Y., Analysis of sea ice motion and deformation in the marginal ice zone of the Bering Sea using SAR data, International Journal of Remote Sensing, 2009, Vol. 30, No. 14, pp. 3603–3611.