ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 7, pp. 250-266

Comparison of coastal currents measured by HF and X-band radars with ADCP and drifter data at the IO RAS hydrophysical test site in the Black Sea

A.G. Zatsepin 1 , V.V. Gorbatskyi 2 , S.A. Myslenkov 3, 1 , N.N. Shpilev 2 , D.I. Dudko 2 , D.V. Ivonin 1 , K.P. Silvestrova 1 , V.I. Baranov 1 , V.A. Telegin 4, 1 , S.B. Kuklev 1 
1 P.P. Shirshov Institute of Oceanology RAS, Moscow, Russia
2 Krylov State Research Center, Saint Petersburg, Russia
3 M.V. Lomonosov Moscow State University, Moscow, Russia
4 Institute of Terrestrial Magnetism and Radio Wave Propagation RAS, Moscow, Russia
Accepted: 03.11.2017
DOI: 10.21046/2070-7401-2017-14-7-250-266
Results of complex sea current velocity measurements are presented. Experiments were held on the hydrophysical test site of the Institute of Oceanology RAS (IO RAS) in the Black Sea (near Gelendzhik) in September-October 2015 and in April 2016. Current velocity was measured by high frequency (HF) radar Sea Sonde (25 MHz), X-band radar (9.7 GHz), two moored ADCPs at 22 m and 85 m, towed bottom-tracked ADCP and also Lagrangian drifters. Drifter underwater sails (0.5–1 m) could be located at different depths. The aims of the experiments were: 1) testing of different radar locations; 2) complex measurements of sea currents; 3) cross-verification of all available equipment. Agreement of all the measurement data were observed in conditions of intensive currents (and eddies, when current is quasi stable) without local wind forcing. The difference between the results was significant in case of variable vertical profile and high spatial and temporal variability of the current. Such difference is due to diverse range of measurement depths and averaging intervals. Also, a good result was obtained by comparing the Sea Sonde radar data with drifters data: correlation coefficient was 0.88 and the RMSE was 9.8 cm/s. The paper presents main advantages and disadvantages of used measurement equipment.
Keywords: Black Sea, coastal currents, submesoscsale eddies, HF radar, X-band radar, ADCP, drifters
Full text

References:

  1. Garbatsevich V.A., Ermoshkin A.V., Ivanov I.I., Telegin V.A., Izmerenie prostranstvenno-vremennykh kharakteristik morskogo volneniya navigatsionnymi RLS maloi moshchnosti (Use low power marine radar X-band to measure the spatial-temporal characteristics of the ocean wave), Geliofizicheskie issledovaniya, 2015, Vol. 13, pp. 91–96.
  2. Garbatsevich V.A., Telegin V.A., Lapshin V.S., Shaboldin N.A., Ivanov I.I., Ivonin D.V., Malogabaritnaya mnogochastotnaya RLS dekametrovogo diapazona dlya monitoringa okeana i ionosfery. Kontseptsii razrabotki i pervye rezul’taty (Compact multifrequency HF radar for ocean and ionosphere monitoring. Conception and first tests), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 4, pp. 100–106.
  3. Garbatsevich V.A., Lapshin V.S., Telegin V.A., Buzinskii N.L., Shaboldin N.A., Maksimova N.S., Ivanov I.I., Ivonin D.V., RLS dekametrovogo diapazona, prednaznachennaya dlya radiolokatsionnogo monitoringa prirodnykh sred (Radar of decametric band designed for radar monitoring of natural environments), Spetsial’naya tekhnika, 2012, No. 3. pp. 30–34.
  4. Gorbatskii V.V., Sabinin K.D., Telegin V.A., Izmerenie vikhrevoi struktury techenii na morskoi poverkhnosti v Chernom more doplerovskim KV-radiolokatorom (Measurement of the eddy structure on the sea surface in the Black Sea by Doppler HF radar), Trudy XXIX Vserossiiskii simpozium “Radiolokatsionnoe issledovanie prirodnykh sred”, Sankt-Peterburg 25–26 marta 2015.
  5. Gorbatskii V.V., Sabinin K.D., Telegin V.A., Zatsepin A.G, Kuklev S.B., Primenenie doplerovskogo KV-radiolokatora dlya issledovaniya prostranstvennoi struktury techenii v Chernom more (Application of Doppler HF radar to study the spatial structure of currents in the Black Sea), Morskoi gidrofizicheskii zhurnal, 2017, No. 3, pp. 63–73.
  6. Zatsepin A.G., Korzh A.O., Kremenetskii V.V., Ostrovskii A.G., Poyarkov S.G., Solov’ev D.M., Izuchenie gidrofizicheskikh protsessov na shel’fe i verkhnei chasti kontinental’nogo sklona Chernogo morya s ispol’zovaniem traditsionnykh i novykh metodov izmerenii (Studies of the hydrophysical processes over the shelf and upper part of the continental slope of the black sea with the use of traditional and new observation techniques), Okeanologiya, 2008, Vol. 48, No. 4, pp. 510–519.
  7. Zatsepin A.G., Kondrashov A.A., Korzh A.O., Korzh A.O., Kremenetskii V.V., Ostrovskii A.G., Solov’ev D.M., Submezomasshtabnye vikhri na kavkazskom shel’fe Chernogo morya i porozhdayushchie ikh mekhanizmy (Submesoscale eddies at the caucasus Black Sea shelf and the mechanisms of their generation), Okeanologiya, 2011, Vol. 51, No. 4, pp. 592–605.
  8. Zatsepin A.G., Piotukh V.B., Korzh A.O., Kukleva O.N., Solov’ev D.M., Izmenchivost’ polya techenii v pribrezhnoi zone Chernogo morya po izmereniyam donnoi stantsii ADCP (Variability of currents in the coastal zone of the Black Sea from long-term measurements with a bottom mounted ADCP), Okeanologiya, 2012, Vol. 52, No. 5, pp. 629–642.
  9. Zatsepin A.G., Ostrovskii A.G., Kremenetskii V.V., Nizov S.C., Piotukh V.B., Solov’ev V.A., Shvoev D.A., Tsibul’skii A.L., Kuklev S.B., Kukleva O.N., Moskalenko L.V., Podymov O.I., Baranov V.I., Kondrashov A.A., Korzh A.O., Kubryakov A.A., Solov’ev D.M., Stanichnyi S.V., Podsputnikovyi poligon dlya izucheniya gidrofizicheskikh protsessov v shel’fovo-sklonovoi zone Chernogo morya (Subsatellite polygon for studying hydrophysical processes in the Black Sea shelf-slope zone), Fizika atmosfery i okeana, 2014, No. 1, pp. 16–29.
  10. Ivonin D.V., Telegin V.A., Azarov A.I., Ermoshkin A.V., Bakhanov V.V., Opredelenie vektora skorosti techeniya po izmereniyam navigatsionnogo radara s shirokoi diagrammoi napravlennosti antenny (Possibility to measure velocity vector of surface currents by means of nautical radar with wide beamwidth antenna), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No 4, pp. 219–227.
  11. Ivonin D.V., Myslenkov S.A., Chernyshov P.V., Arkhipkin V.S., Telegin V.A, Kuklev S.B., Chernyshova A.Yu., Ponomarev A.I., Sistema monitoringa vetrovogo volneniya v pribrezhnoi zone Chernogo morya na osnove radiolokatsii, pryamykh nablyudenii i modelirovaniya: pervye rezul’taty (Monitoring system of wind waves in coastal area of the Black Sea using coastal radars, direct wave measurements and modeling: First results), Problemy regional’noi ekologii, 2013, No. 4, pp. 172–183.
  12. Ivonin D.V., Chernyshov P.V., Kuklev S.B., Myslenkov S.A. (2016a), Predvaritel’nye rezul’taty sravneniya izmerenii vektora skorosti techeniya navigatsionnym radarom Kh-diapazona i donnoi stantsiei ADCP (Preliminary comparisons of sea current velocity vector measurements by a nautical X-band radar and moored ADCP), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 53–66.
  13. Ivonin D.V., Telegin V.A., Chernyshov P.V., Myslenkov S.A., Kuklev S.B. (2016b), Vozmozhnosti radiolokatsionnykh navigatsionnykh sistem X-diapazona dlya monitoringa pribrezhnogo vetrovogo volneniya (Possibilities of X-band nautical radars for monitoring of wind waves near the coast), Okeanologiya, 2016, Vol. 56, No. 4, pp. 647–658.
  14. Kalashnikova N.A., Lavrova O.Yu., Mityagina M.I., Serebryanyi A.N., Vliyanie vikhrevykh struktur na rasprostranenie zagryaznenii v pribrezhnoi zone (Influence of the vortex structures on the spread of pollution in the coastal zone), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 3, pp. 228–240.
  15. Lavrova O.Yu., Serebryanyi A.N., Mityagina M.I., Bocharova T.Yu., Podsputnikovye nablyudeniya melkomasshtabnykh gidrodinamicheskikh protsessov v severo-vostochnoi chasti Chernogo morya (Subsatellite observations of small-scale hydrodynamic processes in the northeastern Black Sea), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 4, pp. 308–322.
  16. Marchuk G.I., Paton B.E., Korotaev G.K., Zalesnyi V.B., Informatsionno-vychislitel’nye tekhnologii: novyi etap razvitiya operativnoi okeanografii (Data-computing technologies: A new stage in the development of operational oceanography), Izvestiya RAN, Fizika atmosfery i okeana, 2013, Vol. 49, No. 6, pp. 629–642.
  17. Myslenkov S.A., Zatsepin A.G., Sil’vestrova K.P., Baranov V.I., Ispol’zovanie dreifuyushchikh buev i buksiruemogo profilografa dlya issledovaniya techenii na shel’fe (Coastal dynamics of the Black Sea shelf zone investigated by drifting buoys and towed ADCP), Vestnik Moskovskogo universiteta. Seriya 5: Geografiya, 2014, No. 6, pp. 73–80.
  18. Ostrovskii A.G., Zatsepin A.G., Solov’ev V.A., Tsibul’skii A.L., Shvoev D.A., Avtonomnyi mobil’nyi apparatno-programmnyi kompleks vertikal’nogo zondirovaniya morskoi sredy na zayakorennoi buikovoi stantsii (Autonomous system for vertical profiling of the marine environment at a moored station), Okeanologiya, 2013, Vol. 53, No. 2, pp. 259–268.
  19. Sil’vestrova K.P., Myslenkov S.A., Zatsepin A.G., Krayushkin E.V., Baranov V.I., Samsonov T.E., Kuklev S.B., Vozmozhnosti ispol’zovaniya GPS-drifterov dlya issledovaniya techenii na shel’fe Chernogo moray (GPS-drifters for study of water dynamics in the Black Sea shelf zone), Okeanologiya, 2016, Vol. 56, No. 1, pp. 159–166.
  20. Barrick D.E., Evens M.W., Weber B.L., Ocean surface currents mapped by radar, Science, 1977, Vol. 198, Issue 4313, pp. 138–144.
  21. Fujii S., Heron M.L., Kim K., Lai J.-W., Lee S.-H., Wu X., Wu X., Wyatt L.R., Yang W.-C., An overview of developments and applications of oceanographic radar networks in Asia and Oceania countries, Ocean Science Journal, 2013, Vol. 48, No. 1, pp. 69–97.
  22. Ivonin D.V., Broche P., Devenon J.L., Shrira V.I., Validation of HF radar probing of the vertical shear of surface currents by ADCP measurements, Journal of Geophysical Research, 2004, Vol. 109, Issue C4, pp. 1–8.
  23. Ivonin D.V., Telegin V.A., Bakhanov V.V., Ermoshkin A.V., Azarov A.I., Sample application of a low-cost X-band monitoring system of surface currents at the Black Sea shore, Russian Journal of Earth Sciences, 2011, Vol. 12, pp.1–8, ES2003. DOI: 10.2205/2011ES000507.
  24. Lynch D.R., Holboke M.J., Naimie C.E., The Maine coastal current: spring climatological circulation, Continental Shelf Research, 1997, Vol. 17, Issue 6, pp. 605–634.
  25. Korotaev G.K., Saenko O.A., Koblinsky C.J., Satellite altimetry observations of the Black Sea level, Journal of Geophysical Research, 2001, Vol. 106, Issue C4, pp. 917–933.
  26. Kubryakov A.A., Stanichny S.V., Zatsepin A.G., Kremenetskiy V.V., Long-term variations of the Black Sea dynamics and their impact on the marine ecosystem, J. Marine Systems, 2016, Vol. 163, pp. 80–94.
  27. Paduan J.D., Kim K.C., Cook M.S. Chávez F.P., Calibration and validation of direction-finding HighFrequency radar ocean surface current observations, IEEE Journal of Oceanic Engineering, 2006, Vol. 31, No. 4, pp. 862–875.