ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 122-132

On monitoring surface displacements of natural terrains using SAR interferometry

E.A. Kiseleva 1 , V.O. Mikhailov 1 , E.I. Smolyaninova 1 , P.N. Dmitriev 1 
1 O.Yu. Schmidt Institute of Physics of the Earth RAS, Moscow, Russia
Accepted: 25.09.2017
DOI: 10.21046/2070-7401-2017-14-5-122-132
For SAR monitoring of surface displacements of territories with lack of good reflectors of radar signals it is extremely important to work out a technique to reveal signals reflected from natural terrains. These signals are characterized by low amplitude and poor coherence for some interferometric pairs. We present critical analysis of different InSAR methods, including those which are the most promising to identify both Persistent and Distributed scatterers (APSI — Advanced Persistent Scatterer Interferometry). We discuss the method of adaptive amplitude filtration which was developed in the framework of the APSI technology (Feretti et al., 2011) and its implementation as the StaMPS/MTI (Hooper et al., 2007) module. We present fields of surface displacement rates for the Adler region of Sochi calculated using ALOS PALSAR images by means of the StaMPS/MTI software applying of the proposed adaptive filtration of amplitude and without any preliminary processing. Application of adaptive filtering of amplitude permitted us to increase the number of Persistent Scatterers from 30000 to 50000.
Keywords: INSAR, persistent and distributed scatterers, APSI
Full text

References:

  1. Bol’shev L.N., Smirnov N.V., Tablitsy matematicheskoi statistiki (Tables of mathematical statistics), Moscow: Nauka, 1983, 416 p.
  2. Mikhailov V.O., Nazaryan A.N., Smirnov V.B., Diaman M., Shapiro N.M., Kiseleva E.A., Tikhotskii S.A., Polyakov S.A., Smol’yaninova E.I., Timoshkina E.P., Sovmestnaya interpretatsiya dannykh differentsial’noi sputnikovoi interferometrii i GPS na primere Altaiskogo (Chuiskogo) zemletryaseniya 27.09.2003 g. (Joint interpretation of INSAR and GPS — case study of Altai (Chuisk) earthquake 27.09.2003), Izvestiya RAN, Ser. Fizika Zemli, 2010, No. 2, pp. 3–16.
  3. Mikhailov V.O., Kiseleva E.A., Smol’yaninova E.I., Dmitriev P.N., Golubev V.I., Isaev Yu.S., Dorokhin K.A., Timoshkina E.P., Khairetdinov S.A., Nekotorye problemy monitoringa opolznevykh protsessov s ispol’zovaniem sputnikovykh radarnykh snimkov s razlichnoi dlinoi volny na primere dvukh opolznevykh sklonov v raione Bol’shogo Sochi (Some problems of monitoring landsliding using SAR acquisitions with different wavelenghs: case study of two landslides in the Big Sochi area), Izvestiya RAN. Ser. Fizika Zemli, 2014, No. 4, pp. 120–130.
  4. Bamler R., Hartl P., Synthetic aperture radar interferometry, Inverse Problems, 1998, Vol. 14, No. 4, pp. R1–R54.
  5. Berardino P., Fornaro G., Lanari R., Sansosti E., A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Trans. Geoscience and Remote Sensing, 2002, Vol. 40, No. 11, pp. 2375–2383.
  6. Ferretti A., Prati C., Rocca F., Permanent scatterers in SAR interferometry, IEEE Trans. Geoscience and Remote Sensing, 2001, Vol. 39, No. 1, pp. 8–20.
  7. Ferretti A., Fumagalli A., Novali F., Prati C., Rocca F., Rucci A., A new algorithm for processing interferometric datastacks: Squeesar, IEEE Trans. Geoscience and Remote Sensing, 2011, Vol. 49, No. 9, pp. 3460–3470.
  8. Hanssen R., Radar Interferometry: Data Interpretation and Error Analysis, Dordrecht, The Netherlands: Kluwer, 2001, 328 p.
  9. Hooper A., Segall P., Zebker H., Persistent Scatterer InSAR for Crustal Deformation Analysis, with Application to Volcan Alcedo, Galapagos, J. Geophysical Research, 2007, Vol. 112, B07407. DOI: 10.1029/2006JB004763.
  10. Kampes B.M., Radar interferometry: persistent scatterer technique, Springer, 2006, 220 p.
  11. Lanari R., Manzo M., Pepe A., Yang Y., Tizzani P., Zeni G., A full exploitation of the enhanced SBAS-DInSAR approach in volcanic and seismogenic areas, Proc. IGARSS 2013, Melbourne 21–26 July 2013.
  12. Monti Guarnieri A., Tebaldini S., On the exploitation of target statistics for sar interferometry applications, IEEE Trans. Geoscience and Remote Sensing, 2008, Vol. 46, No. 11, pp. 3436–3443.
  13. Samiei-Esfahany S., Martins J.E., van Leijen F., Hanssen R.F., Phase Estimation for Distributed Scatterers in InSAR Stacks Using Integer Least Squares Estimation, IEEE Trans. Geoscience and Remote Sensing, 2016, Vol. 54, No. 10, pp. 5671–5686.
  14. Samsonov S.V., Tiampo K.F., Rundle J.B., Application of DInSAR GPS optimization for derivation of three dimensional surface motion of the southern California region along the San Andreas fault, Computers and Geosciences, 2008, Vol. 34, pp. 503–514.
  15. Stephens M.A., Use of the Kolmogorov-Smirnov, Cramér-Von Mises and related statistics without extensive tables, J. Royal Statistical Society, Ser. B (Methodological), 1970, Vol. 32, No. 1, pp. 115–122.
  16. Wang M., Li T., Jiang L., Monitoring reclaimed lands subsidence in Hong Kong with InSAR technique by persistent and distributed scatterers, Natural hazards, 2016, Vol. 81, No. 1, pp. 541–543.