ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 149-160

Management of sowing time according to Earth remote sensing data

I.M. Mikhailenko 1 , V.N. Timoshin 1 
1 Agrophysical Research Institute, Saint Petersburg, Russia
Accepted: 25.09.2017
DOI: 10.21046/2070-7401-2017-14-5-149-160
Scientifically-based methodical recommendations for the most important decision taken by agronomic services, i.e. decisions, when to start spring sowing, are presented. For this purpose, Earth remote sensing satellite data (NOAA, MetOp and MODIS: satellites EOS-Aqua, Terra) on temperature and humidity of the top soil and ground-based measurements of these parameters at meteorological points are used. The decision is taken on the basis of a criterion, which uses forecasts for seed germination as an indicator. To build up such a forecast, a dynamic model of temperature and humidity of the top soil and a model of germination index are used. High accuracy of temperature and soil moisture estimation and prediction is achieved by using the optimal filtering algorithm, which is realized by combining terrestrial measurements and remote sensing data. Due to this algorithm, the standard error of the estimation of soil temperature and soil humidity is reduced to ±5%. Moreover, the optimal estimates of temperature and humidity serve as initial conditions for predicting the criterion of making the decision on sowing time in spring.
Keywords: decision on sowing time, remote sensing data of the Earth, mathematical models, optimal estimations, indicator of crop germination
Full text

References:

  1. Bykhovets S.S., Sorokovikov V.A., Martuganov P.A., Mamykin V.G., Gilichinskiy D.A., Istoriya nablyudeniy za temperaturoy pochvy na seti meteorologicheskikh stantsiy Rossii (The history of observations of soil temperature on the network of meteorological stations in Russia), Kriosfera Zemli, 2007, Vol. 11, No. 1, pp. 7–20.
  2. de Groot M. Optimal’nyye statisticheskiye resheniya (Optimal statistical solutions), Moscow: Mir, 1974, 482 p.
  3. Kondrat’yev K.Ya. Timofeyev Yu.M., Termicheskoye zondirovaniye atmosfery so sputnikov (Thermal sounding of the atmosphere from satellites), Leningrad: Gidrometeoizdat, 1970, 410 p.
  4. Kondrat’yev K.Ya., Timofeyev Yu.M., Meteorologicheskoye zondirovaniye atmosfery iz kosmosa (Meteorological sounding of the atmosphere from space), Leningrad: Gidrometeoizdat, 1978, 280 p.
  5. Muzylev E.L., Uspenskiy A.B., Volkova E.V., Startseva Z.P., Ispol’zovaniye sputnikovoy informatsii pri modelirovanii vertikal’nogo teplo- i vlagoperenosa dlya rechnykh vodosborov (The use of satellite information in the modeling of vertical heat and moisture transfer for river watersheds), Issledovaniye Zemli iz kosmosa, 2005, No. 4, pp. 35–44.
  6. Mikhaylenko I.M., Poluektov R.A., Yakushev V.P., Agromonitoring: struktura, funktsii, realizatsiya (Agromonitoring: structure, functions, implementation), Doklady RASKHN, 2004, No. 3, pp. 66–68.
  7. Mikhaylenko I.M., Kurashvili A.Ye., Prognozirovaniye sostoyaniya travostoya v sisteme upravleniya kachestvom kormov v molochnom zhivotnovodstve (Forecasting the condition of the grass stand in the feed quality management system in dairy cattle breeding), Vestnik RSKHA, 2008, No. 2, pp. 10–13.
  8. Mikhaylenko I.M. Osnovnyye zadachi otsenivaniya sostoyaniya posevov i pochvennoy sredy po dannym kosmicheskogo zondirovaniya (The main tasks of assessing the state of crops and soil environment from space probing data), Ekologicheskiye sistemy i pribory, 2011, No. 8, pp. 17–25.
  9. Solov’yev V.I., Uspenskiy S.A., Uspenskiy A.B., Eksperimenty po distantsionnomu opredeleniyu temperatury poverkhnosti sushi na osnove dannykh s geostatsionarnykh meteorologicheskikh ISZ (Experiments on remote sensing of land surface temperature on the basis of data from geostationary meteorological satellites), Trudy MSARD-2009, 2009, p. 53.
  10. Solov’yev V.I., Uspenskiy S.A., Monitoring temperatury poverkhnosti sushi po dannym geostatsionarnykh meteorologicheskikh sputnikov novogo pokoleniya (Surface temperature monitoring according to the data of geostationary meteorological satellites of the new generation), Issledovanie Zemli iz kosmosa, 2009, No. 3, pp. 79–89.
  11. Solov’yev V.I, Uspenskiy A.B., Uspenskiy S.A., Opredeleniye temperatury zemnoy poverkhnosti po dannym izmereniy ukhodyashchego teplovogo izlucheniya s geostatsionarnykh meteorologicheskikh ISZ (Determination of the earth’s surface temperature from measurements of outgoing heat radiation from geostationary meteorological satellites), Meteorologiya i gidrologiya, 2010, No. 3, pp. 5–17.
  12. Sutovskiy V.M., Uspenskiy A.B., O distantsionnom opredelenii temperatury podstilayushchey poverkhnosti s uchetom yeye nechernoty po dannym sputnikovykh izmereniy izlucheniya v diapazone 10.5–12.5 mkm. (O distantsionnom opredelenii temperatury podstilayushchey poverkhnosti s uchetom yeye nechernoty po dannym sputnikovykh izmereniy izlucheniya v diapazone 10.5–12.5 mkm), Trudy GosNITSIPR, 1996, Issue. 33, pp. 66–78.
  13. Uspenskiy A.B. Ob otsenke temperatury poverkhnosti sushi po dannym sputnikovykh izmereniy ukhodyashchego IK izlucheniya v diapazone 10,5–12,5 mkm (On the assessment of land surface temperature from satellite measurements of outgoing IR radiation in the range 10.5-12.5 μm), Meteorologiya i gidrologiya, 1992, No. 10, pp. 19–27.
  14. Barton I.J., Satellite derived SST’s: current status, Journal Geophysics Researches, 1995, Vol. 5, pp. 8777–8790.
  15. Becker F., The impact of spectral emissivity on the measurement of land surface temperature from satellite, International Journal Remote Sensing, 1987, Vol. 8, pp. 1509–1522.
  16. Becker F., Li Z.-L., Temperature-independent spectral indices in thermal infrared bands, Remote Sensing Environmental, 1990, Vol. 32, No. 3, pp. 17–33.
  17. Chevallier F., Chedin A, Cheruy N., Mocrette J.J., TIGR-Iike atmospheric profile database for accurate radiative flux computation, Quarterly Journal of the Royal Meteorological Society, 2015, Vol. 126, pp. 777–785.
  18. Mikhailenko I.M., Assessment of crop and soil state using satellite remote sensing data, International Journal of Information Technology and Operations Management, 2013, Vol. 1, No. 5, pp. 41–52.
  19. Zlinszky A., Heilmeier H., Balzter H., Czúcz B., Pfeifer N., Remote Sensing and GIS for Habitat Quality Monitoring: New Approaches and Future Research, Remote Sensing, 2015, No. 7 (6), pp. 7987–7994.