ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 195-208

Spatial and temporal variability of the Barents Sea ice retrieved from satellite passive microwave radiometer data

E.V. Zabolotskikh 1 , A.G. Myasoedov 1 
1 Russian State Hydrometeorological University, Saint Petersburg, Russia
Accepted: 21.06.2017
DOI: 10.21046/2070-7401-2017-14-5-195-208
The results of the analysis of spatial and temporal variability of sea ice in the Barents Sea from satellite passive microwave radiometer data of low and medium resolution are discussed in this paper. The sea ice area and sea ice extent decrease trends are obtained for the period of 37 years. The sea ice dynamics in the Barents Sea in the winter of 2016–2017 is analyzed. It is shown that for the early years, high sea ice concentration is observed in the sea for the whole season whereas for the past years, open sea ice edge is observed in the north. The analysis of the Barents Sea ice in the winter of 2016–2017 has shown that the minimum sea ice area was lasting during the whole October. The sea ice cover started to grow steadily only in January. The reasons for such untypical dynamics relate to wind regime, atmospheric and oceanic circulation, extratropical cyclone activity in the current and previous periods. Additional research is needed to reveal the importance of each of the factors.
Keywords: sea ice, Barents Sea, satellite passive microwave radiometer data, spatial and temporal variability
Full text

References:

  1. Zubakin G.K., Krupnomasshtabnaya izmenchivost sostoyaniya ledyanogo pokrova Severo-Evropeiskogo basseina (Large scale sea ice state variability in the Northern Seas), Leningrad: Gydrometeoizdat, 1987, 160 p.
  2. Ivanov V.V., Alexeev V.A., Alexeeva T.A., Koldunov N.V., Repina I.A., Smirnov A.V., Arktichesky ledyanoi pokrov stanovitsya sezonnym? (Is the Arctic sea ice getting seasonal character?), Issledovaniya Zemli iz kosmosa, 2013, No. 4, pp. 50–65.
  3. Mitnik L.M., Mitnik M.L., Kalibrovka I validatsiya — neobhodimye sostavlyayuschie mikrovolnovyh radiometricheskih izmereny so sputnikov serii Meteor-M No. 2 (Calibration and Validation — are the requirements for passive microwave radiometer measurements from the Meteor-M series satellite measurements), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 1, pp. 95–104.
  4. Smirnov V.G., Bushuev A.V., Zahvatkina N.Yu., Loschilov V.S., Sputnikovy monitoring morskih ldov (Satellite monitoring of the sea ice), Problemy Arktiki i Antarktiki, 2010, Vol. 85, No. 2, pp. 62–76.
  5. Tikhonov V.V., Raev M.D., Sharkov E.A., Boyarskii D.A., Repina I.A., Komarova N.Y., Monitoring morskogo lda polyarnyh regionov s ispolzovaniem sputnikovoi mikrovolnovoi radiometrii (Polar region sea ice monitoring using satellite passive microwave radiometer data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 150–169.
  6. Årthun M., Eldevik T., Smedsrud L.H., Skagseth Ø., Ingvaldsen R.B., Quantifying the Influence of Atlantic Heat on Barents Sea Ice Variability and Retreat, J. Climate, 2012, Vol. 25, No. 13, pp. 4736–4743.
  7. Cavalieri D.J., Gloersen P., Campbell W.J., Determination of sea ice parameters with the Nimbus 7 SMMR, J. Geophysical Research: Atmospheres (1984–2012), 1984, Vol. 89, No. D4, pp. 5355–5369.
  8. Cavalieri D.J., Parkinson C.L., Arctic sea ice variability and trends, 1979–2010, Cryosphere, 2012, Vol. 6, No. 4, pp. 881–889.
  9. Comiso J.C., Sea ice effective microwave emissivities from satellite passive microwave and infrared observations, J. Geophysical Research: Oceans (1978–2012), 1983, Vol. 88, No. C12, pp. 7686–7704.
  10. Comiso J.C., Large Decadal Decline of the Arctic Multiyear Ice Cover, J. Climate, 2012, Vol. 25, No. 4, pp. 1176–1193.
  11. Comiso J.C., Cavalieri D.J., Markus T., Sea ice concentration, ice temperature, and snow depth using AMSR-E data, IEEE Trans. Geosciences Remote Sensing, 2003, Vol. 41, No. 2, pp. 243–252.
  12. Deser C., Teng H., Evolution of Arctic Sea ice concentration trends and the role of atmospheric circulation forcing, 1979–2007, Geophysical Research Letters, 2008, Vol. 35, No. 2. DOI :10.1029/2007GL032023.
  13. Divine D.V., Dick C., Historical variability of sea ice edge position in the Nordic Seas, J. Geophysical Research: Oceans, 2006, Vol. 111, No. C1. DOI: 10.1029/2004JC002851.
  14. Francis J.A., Hunter E., Drivers of declining sea ice in the Arctic winter: A tale of two seas, Geophysical Research Letters, 2007, Vol. 34, No. 17. DOI: 10.1029/2007GL030995.
  15. Herbaut C., Houssais M.-N., Close S., Blaizot A.-C., Two wind-driven modes of winter sea ice variability in the Barents Sea, Deep Sea Research Part I: Oceanographic Research Papers., 2015, Vol. 106, pp. 97–115.
  16. Ivanov V.V., Alexeev V.A., Koldunov N.V., Repina I.A., Sandø A.B., Smedsrud L.H., Smirnov A.V., Arctic Ocean Heat Impact on Regional Ice Decay: A Suggested Positive Feedback, J. Physical Oceanography, 2016, Vol. 46, pp. 1437–1456. DOI: 10.1175/JPO-D-15-0144.1.
  17. Ivanova N., Johannessen O.M., Pedersen L.T., Tonboe R.T., Retrieval of Arctic Sea Ice Parameters by Satellite Passive Microwave Sensors: A Comparison of Eleven Sea Ice Concentration Algorithms, IEEE Trans. Geosciences Remote Sensing, 2014, Vol. 52, No. 11, pp. 7233–7246.
  18. Ivanova N., Pedersen L.T., Tonboe R.T., Kern S., Heygster G., Lavergne T., Sørensen A., Saldo R., Dybkjaer G., Brucker L., Shokr M., Satellite passive microwave measurements of sea ice concentration: An optimal algorithm and challenges, Cryosphere, 2015, Vol. 9, pp. 1797–1817.
  19. Kaleschke L., Lüpkes C., Vihma T., Haarpaintner J., Bochert A., Hartmann J., Heygster G., SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis, Canadian J. Remote Sensing, 2001, Vol. 27, No. 5, pp. 526–537.
  20. Koenigk T., Brodeau L., Ocean heat transport into the Arctic in the twentieth and twenty-first century in EC-Earth, Climate Dynamics, 2014, Vol. 42, No. 11, pp. 3101–3120.
  21. Kwok R., Outflow of Arctic Ocean sea ice into the Greenland and Barents Seas: 1979–2007, J. Climate, 2009, Vol. 22, No. 9, pp. 2438–2457.
  22. Markus T., Cavalieri D.J., An enhancement of the NASA Team sea ice algorithm, IEEE Trans. Geosciences Remote Sensing, 2000, Vol. 38, No. 3, pp. 1387–1398.
  23. Meier W., Fetterer F., Savoie M., Mallory S., Duerr R., Stroeve J., NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 2. Boulder, Colorado USA: National Snow and Ice Data Center, 2013.
  24. Nakanowatari T., Sato K., Inoue J., Predictability of the Barents Sea Ice in Early Winter: Remote Effects of Oceanic and Atmospheric Thermal Conditions from the North Atlantic, J. Climate, 2014, Vol. 27, No. 23, pp. 8884–8901.
  25. Onarheim I.H., Eldevik T., Årthun M., Ingvaldsen R.B., Smedsrud L.H., Skillful prediction of Barents Sea ice cover, Geophysical Research Letters, 2015, Vol. 42, pp. 5364–5371.
  26. Sandø A.B., Nilsen J.E.Ø., Gao Y., Lohmann K., Importance of heat transport and local air-sea heat fluxes for Barents Sea climate variability, J. Geophysical Research, 2010, Vol. 115, No. C7. DOI: 10.1029/2009JC005884.
  27. Simmonds I., Keay K., Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979–2008, Geophysical Research Letters, 2009, Vol. 36, No. 19. DOI: 10.1029/2009GL039810.
  28. Smedsrud L.H., Esau I., Ingvaldsen R.B., Eldevik T., Haugan P.M., Li C., Lien V.S., Olsen A., Omar A.M., Otterå O.H., Risebrobakken B., Sandø A.B., Semenov V.A., Sorokina S.A., The role of the Barents Sea in the Arctic climate system, Reviews Geophysics, 2013, Vol. 51, No. 3, pp. 415–449. DOI: 10.1002/rog.20017
  29. Spreen G., Kaleschke L., Heygster G., Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophysical Research: Oceans (1978–2012), 2008, Vol. 113, No. C2. DOI: 10.1029/2005JC003384.
  30. Svendsen E., Kloster K., Farrelly B., Johannessen O.M., Johannessen J.A., Campbell W.J., Gloersen P., Cavalieri D., Mätzler C., Norwegian remote sensing experiment: Evaluation of the Nimbus 7 Scanning Multichannel Microwave Radiometer for sea ice research, J. Geophysical Research: Oceans (1978–2012), 1983, Vol. 88, No. C5, pp. 2781–2791.
  31. Stroeve J.C., Serreze M.C., Holland M.M., Kay J.E., Malanik J., Barrett A.P., The Arctic’s rapidly shrinking sea ice cover: a research synthesis, Climatic Change, 2012, Vol. 110, No. 3, pp. 1005–1027.
  32. Svendsen E., Matzler C., Grenfell T.C., A model for retrieving total sea ice concentration from a spaceborne dual-polarized passive microwave instrument operating near 90 GHz, Intern. J. Remote Sensing, 1987, Vol. 8, No. 10, pp. 1479–1487.
  33. Teleti P.R., Luis A.J., Sea Ice Observations in Polar Regions: Evolution of Technologies in Remote Sensing, International Journal of Geosciences, 2013, Vol. 4, No. 7. DOI: 10.4236/ijg.2013.47097.
  34. Tikhonov V.V., Repina I.A., Raev M.D., Sharkov E.A., Ivanov V.V., Boyarskii D.A., Alexeeva T.A., Komarova N.Y., A physical algorithm to measure sea ice concentration from passive microwave remote sensing data, Advances in Space Research, 2015, Vol. 56, No. 8, pp. 1578–1589.
  35. Wentz F.J., Schabel M., Precise climate monitoring using complementary satellite data sets, Nature, 2000, Vol. 403, No. 6768, pp. 414–416.