ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 26-36

Automatic selection of image compression parameters with losses based on invariant moments for Earth remote sensing purposes

D.Yu. Starobinets 1 , A.D. Khomonenko 2, 1 , N.A. Gavrilova 2 
1 A.F. Mozhaisky Military Space Academy, Saint Petersburg, Russia
2 Emperor Alexander I Petersburg State Transport University, Saint Petersburg, Russia
Accepted: 07.07.2017
DOI: 10.21046/2070-7401-2017-14-5-26-36
An approach is proposed to automatically select parameters for compressing images with losses based on the evaluation of invariant moments. The choice of parameters is carried out with respect to discrete cosine transform and wavelet transformation as part of JPEG and JPEG2000 compression algorithms. The criterion for assessing the quality of images is the ability to recognize in the compressed image the objects that could be recognized in the original image. To assess the quality of the compressed image, an expert approach was previously used, which consists in evaluating the possibility of visual recognition of controlled objects by an expert manually. To automate the analysis of the quality of the compressed image, seven invariant moments are calculated for image fragments that are invariant with respect to transfers, axial symmetry, rotations, and also tensile and contractions. It is shown that for each class of images it is possible to specify an index of the accuracy of the correspondence of the invariants of moments to the standard. It sets a significant digit for each of the invariants, by the change of which we can conclude that there is a reference object on the image fragment. The parameters are determined from the conditions for obtaining the minimum volume of the compressed file with the given quality requirements for the image. Numerical examples of definition of compression parameters of Earth remote sensing images are presented.
Keywords: image compression, invariant moments, discrete cosine transform, wavelet transform, JPEG, JPEG2000 algorithms, remote sensing of the Earth
Full text

References:

  1. Altukhov A.I., Dudin E.A., Titkov B.V., Tekhnologiya kompressii izobrazhenii bol’shikh razmerov (Fair-sized images compression technology), Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. Informatika. Telekommunikatsii. Upravlenie, 2009, No. 72, pp. 46–51.
  2. Gonsales R., Vuds R., Eddins R., Tsifrovaya obrabotka izobrazhenii v srede Matlab (Digital image processing in Matlab environment), Moscow: Tekhnosfera, 2006, 616 p.
  3. Zhigalko E.F., Osobennost’ asimptoticheskikh svoistv integral’nykh invariantov (A Singularity of Integral Moment Invariants), Intellektual’nye tekhnologii na transporte, 2015, No. 4 (4), pp. 55–58.
  4. Ivanov E.S., Nekotorye prilozheniya segmentatsii snimkov DZZ (Some applications of segmentation of pictures Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 1, pp. 105–116.
  5. Miano Dzh., Formaty i algoritmy szhatiya izobrazhenii v deistvii (The formats and image compression algorithms in action), Moscow: Triumf, 2003, 336 p.
  6. Petrov E.P., Kharina N.L., Chukaev K.N., Metod vydeleniya konturov ob"ektov na sputnikovykh snimkakh minimal’nymi vychislitel’nymi resursami (The method of allocation of contours of objects in satellite images minimal computing resources), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 5, pp. 304–311.
  7. Uelstid S., Fraktaly i veivlety dlya szhatiya izobrazhenii v deistvii (Fractals and wavelets for image compression in action), Moscow: Triumf, 2003, 320 p.
  8. Khomonenko A.D., Starobinets D.Y., Uvarov V.A., Vybor parametrov szhatiya izobrazhenii s poteryami na osnove ikh kharakteristicheskikh svoistv (Selecting the image compression settings to losses on the basis of their characteristic properties), Izvestiya Peterburgskogo universiteta putei soobshcheniya, 2012, Vol. 4 (33), pp. 78–85.
  9. Shovengerdt R., Distantsionnoe zondirovanie. Metody i modeli obrabotki izobrazhenii (Remote sensing. Methods and image processing model), Moscow: Tekhnosfera, 2010, 560 p.
  10. Hu M, Visual Pattern Recognition by Moment Invariants, IRE Trans. Information Theory, 1962, Vol. 8, pp. 179–187.