ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 285-299

Influence of atmospheric optical parameters on the characteristics of solar radiation

A.V. Vasilyev 1 , I.N. Melnikova 1, 2 , S.S. Novikov 1 
1 St. Petersburg State University, St. Petersburg, Russia
2 Russian State Hydrometeorological University, St. Petersburg, Russia
Accepted: 29.08.2017
DOI: 10.21046/2070-7401-2017-14-5-285-299
The work investigates the dependencies of solar radiation characteristics on optical models of the Earth’s atmosphere. The article presents results for the reflected and transmitted hemispherical fluxes, radiative divergence, proportion of the scattered radiation in the transmitted flux, the contribution of different scattering orders in cloudless and cloudy atmospheres. Different values of atmospheric optical parameters, surface albedos and lighting geometries are considered. Computer codes, used for models of a homogeneous atmosphere, implement four methods of transfer theory: single scattering approximation, Eddington method, Monte Carlo method and method of asymptotic formulas. Values of the parameters, for which the dependence of radiative divergence from solar zenith angle and reflected flux on optical thickness is minimal weak, and described by a linear function, are identified. The proposed simple linear approximations of the flux dependence from atmospheric parameters and solar zenith angle allow fast and easy estimation of radiation characteristics when solving inverse problems of remote sensing, namely, retrieving atmospheric and surface optical parameters from satellite observations, or integrating radiative characteristics over solar zenith angle, or in technical applications, for example, when choosing the type of solar cell batteries for houses.
Keywords: solar radiation, hemispherical flux, radiative divergence, surface albedo, optical thickness, probability of quantum survival, surface albedo
Full text

References:

  1. Vasilyev A.V., Kuznetsov A.D., Melnikova I.N., Distantsionnoe zondirovanie okruzhayushchei sredy iz kosmosa: Praktikum (Remote sensing of Environment from the Space: Practical course), Saint Petersburg: Izd-vo BGTU “Voenmekh”, 2008, 133 p.
  2. Vasilyev A.V., Kuznetsov A.D., Melnikova I.N., Approksimatsiya mnogokratno rasseyannogo solnechnogo izlucheniya v ramkakh priblizheniya odnokratnogo rasseyaniya (Approximating multiple scattered solar radiation in range of single scattering), Uchenye zapiski, 2016, No. 42, pp. 94–104.
  3. Ginzburg A.S., Gubanova D.P., Minashkin V.M. (2008a), Vliyanie estestvennykh i antropogennykh aerozolei na global’nyi i regional’nyi klimat (Impact of natural and anthropogenic aerosols on global and regional climate), Russian chemical journal, 2008, Vol. 52, No. 5, pp. 112–119.
  4. Ginzburg A.S., Romanov S.V., Fomin B.A. (2008b), Ispol’zovanie radiatsionno-konvektivnoi modeli dlya otsenki temperaturnogo potentsiala parnikovykh gazov (Application of the radiative-convective simulation for estimating the temperature potential of greenhouse gases), Izv. RAN, ser. Fizika atmosfery i okeana, 2008, Vol. 44, No. 3, pp. 324–331.
  5. Marchuk G.I., Metod Monte-Karlo v atmosfernoi optike (The Monte-Carlo approach in the atmospheric optics), Novosibirsk: Nauka, 1988, 263 p.
  6. Minin I.N., Teoriya perenosa izlucheniya v atmosferakh planet (Radiation transfer theory in planet atmospheres), Moscow: Nauka, 1988, 264 p.
  7. Sushkevich T.A., Matematicheskie modeli perenosa izlucheniya (Mathematical models of the radiation transfer theory), Moscow: BINOM, Laboratoriya znanii, 2005, 601 p.
  8. Dong X., Ackerman T.P., Clothiaux E.E., Parameterizations of the microphysical and shortwave radiative properties of boundary layer stratus from ground-based measurements, Journal of Geophysical Research, 1998, Vol. 103, No. D24, pp. 31681–31693.
  9. Gao R.S., Hall S.R., Swartz W.H., Schwarz J.P., Spackman J.R., Watts L.A., Fahey D.W., Aikin K.C., Shetter R.E., Bui T.P., Calculations of solar shortwave heating rates due to black carbon and ozone absorption using in situ measurements, Journal of Geophysical Research, 2008, Vol. 113, No. D14203, pp. 1–11.
  10. Harshvardhan, King M.D., Comparative accuracy of diffuse radiative properties computed using selected multiple scattering approximations, Journal of the Atmospheric Sciences, 1993, Vol. 50, pp. 247–259.
  11. Henyey L., Greenstain J., Diffuse radiation in Galaxy. Astrophysical J., 1941, Vol. 93, No. 1, pp. 70−83.
  12. Joseph J.H., Wiscombe W.J., Weiman J.A. The delta-Eddington approximation for radiative flux transfer, J. Atmospheric Sciences, 1976, Vol. 33, pp. 2452–2459.
  13. Koepke P., Hess M., Bretl S., Seefeldner M., UV irradiance on the human skin: Effects of orientation and sky obstructions, Current Problems in Atmospheric Radiation, Proceedings of IRS 2008, 2009, pp. 53–56.
  14. Kondratyev K.Ya., Fedorova M.P. Radiation regime of inclined surfaces, WMO Techn. Note, No. 152, Geneva, 1977, 82 p.
  15. Radiative transfer in scattering and absorbing atmospheres: standard computational procedures, Hampton, Virginia, USA: A. DEEPAK Publishing, 1985, 314 p.
  16. Prasolov A.V. Some Quantitative Methods and Models in Economic Theory, New York, Nova Science Publishers, 2016, 284 p.