ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 209-220

Spatial spectra of sea surface temperature and chlorophyll “a” concentration fields in the marginal seas of the northwest Pacific Ocean

T.I. Kleshcheva 1 , M.S. Permyakov 1, 2 , P.A. Salyuk 1, 3 , I.A. Golik 1 
1 V.I.Il`ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
2 Far Eastern Federal University, Vladivostok, Russia
3 Adm. G.I. Nevelskoy Maritime State University, Vladivostok, Russia
Accepted: 01.06.2017
DOI: 10.21046/2070-7401-2017-14-5-209-220
From shipborne fluorometer data and data of Aqua MODIS (Moderate Resolution Imaging Spectroradiometer) for the period of 2003–2004, spatial spectra of the fluctuations of sea surface temperature (SST) and chlorophyll “a” concentration (Chl) fields were obtained in some areas of marginal seas of the northwest Pacific Ocean. The SST spectra slopes calculated from ship and satellite data varied from –2.2 to –3.1 and from –1.6 to –2.9, respectively, at scales from 4 to 160 km and were in the range of values predicted by the theories of the quasi-geostrophic turbulence. It was noted that the SST MODIS spectra were flatter compared to the ship ones, while the discrepancy between their slopes was slight, about 20 % on the average. In the wavelength range from 4 to 160 km the slopes of Chl spectra estimated according to shipborne measurements were close to –1 and consistent with theoretical estimates for the spectrum of phytoplankton. It was shown that the Chl MODIS spectra in the specified range of scales fell off about 2 times faster on the average than the ship spectra due to spatial smoothing of satellite measurements and estimates of chlorophyll “a” concentrations by the bio-optical algorithms.
Keywords: sea surface temperature, chlorophyll “a” concentration, spectra, shipborne fluorometer, remote sensing, tracer
Full text

References:

  1. Algoritmy i programmy vosstanovleniya zavisimostei (Algorithms and programs for recovering dependencies), Moscow: Nauka, 1984, 816 p.
  2. Bukin O.A., Permyakov M.S., Maior A.Yu., Sagalaev S.G., Lipilina E.A., Khovanets V.A., O kalibrovke metoda lazernoi fluorometrii pri izmerenii kontsentratsii khlorofilla “a” (To the problem of calibration of the laser fluorometry method at measurement of the chlorophyll “a” concentration), Optika atmosfery i okeana, 2001, Vol. 14, No. 3, pp. 223–226.
  3. Burov D.V., Permyakov M.S., Tarkhova T.I., Osobennosti prostranstvennoi izmenchivosti polei gidrologicheskikh i bioopticheskikh elementov v razlichnykh raionakh Mirovogo okeana (Features of the spatial variability of hydrological and biological fields of optical elements in different areas of the oceans), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Vol. 2, No. 5, pp. 62–68.
  4. Zav’yalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii (Methods of spline functions), Moscow: Nauka, 1980, 353 p.
  5. Kleshcheva T.I., Permyakov M.S., Vliyanie prostranstvennoi izmenchivosti temperatury poverkhnosti okeana na pole vetra (The influence of spatial variability of sea surface temperature on wind field), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 3, pp. 216–223.
  6. Maior A.Yu., Bukin O.A., Pavlov A.N., Kiselev V.D., Sudovoi lazernyi fluorimetr dlya issledovaniya spektrov fluorestsentsii morskoi vody (A shipborne laser fluorimeter for studying sea-water fluorescence spectra), Pribory i tekhnika eksperimenta, 2001, Vol. 44, No. 4, pp. 151–154.
  7. Shtraikhert E.A., Zakharkov S.P., Gordeichuk T.N., Shambarova Yu.V., Kontsentratsiya khlorofilla-a i bio-opticheskie kharakteristikiv zalive Petra Velikogo (Yaponskoe more) vo vremya zimne-vesennego tsveteniya fitoplanktona (Chlorophyll-a concentration and bio-optical characteristics in the Peter the Great Bay (Sea of Japan) during winter-spring phytoplankton bloom), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 1, pp. 148–162.
  8. Abraham E.R., Bowen M.M., Chaotic stirring by a mesoscale surface-ocean flow, Chaos, 2002, Vol. 12, pp. 373–381.
  9. Bennett A.F., Denman K.L., Phytoplankton patchiness: inferences from particles statistics, J. Marine Research, 1985, Vol. 43, pp. 307–335.
  10. Blumen W., Uniform potential vorticity flow: Part I. Theory of wave interactions and two-dimensional turbulence, J. Atmospheric Sciences, 1978, Vol. 35, pp. 774–783.
  11. Bukin O.A., Pavlov A.N., Permyakov M.S., Major A.Yu., Konstantinov O.G., Maleenok A.V., Ogay O.S., Continuous measurements of chlorophyll a concentration in the Pacific Ocean by shipborne laser fluorometer and radiometer: comparison with SeaWiFS data, Intern.l J. Remote Sensing, 2001, Vol. 22, No. 2-3, pp. 415–427.
  12. Callies J., Ferrari R., Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km), J. Physical Oceanography, 2013, Vol. 43, pp. 2456–2474.
  13. Capet X.P., McWilliams J.C., Molemaker M.J., Shchepetkin A.F., Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests, J. Physical Oceanography, 2008, Vol. 38, pp. 29–43.
  14. Charney J., Geostrophic turbulence, J. Atmospheric Sciences, 1971, Vol. 28, pp. 1087–1095.
  15. Denman K., Platt T., The variance spectrum of phytoplankton in a turbulent ocean, J. Marine Research, 1976, Vol. 34, pp. 593–601.
  16. Garrett C., Munk W., Space-time scales of internal waves: A progress report, J. Geophysical Research, 1975, Vol. 80 (3), pp. 291–297.
  17. Gower J.F.R., Denman K.L., Holyer R.J., Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure, Nature, 1980, Vol. 288, pp. 157–159.
  18. Kraichnan R.H., Convection of a passive scalar by a quasi-uniform random straining field, J. Fluid Mechanics, 1974, Vol. 64, pp. 737–762.
  19. Lesieur M., Sadourny R., Satellite sensed turbulent ocean structure, Nature, 1981, Vol. 294, p. 673.
  20. Lévy M., Klein P., Does the low frequency variability of mesoscale dynamics explain a part of the phytoplankton and zooplankton spectral variability? Proc. Royal Society of London A, 2004, Vol. 460, pp. 1673–1687.
  21. Mahadevan A., Campbell J.W., Biogeochemical patchiness at the sea surface, Geophysical Research Letters, 2002, Vol. 29, No. 19, p. 1926. DOI: 10.1029/2001GL014116.
  22. O’Reilly J.E., Maritorena S., O’Brien M.C., Siegel D.A., Toole D., Menzies D., Smith R.C., Mueller J.L., Mitchell B.G., Kahru M., Chavez F.P., Strutton P., Cota G.F., Hooker S.B., McClain C.R., Carder K.L., Müller-Karger F., Harding L., Magnuson A., Phinney D., Moore G.F., Aiken Js., Arrigo K.R., Letelier R., Culver M., SeaWiFS Postlaunch Calibration and Validation Analyses: Part 3, NASA Technical Memorandum, Greenbelt, Maryland: NASA Goddard Space Flight Center, 2000, Vol. 11, pp. 9–23.
  23. Smith R.C., Zhang X., Michaelsen J., Variability of pigment biomass in the California current system as determined by satellite imagery 1. Spatial variability, J. Geophysical Research, 1988, Vol. 93, Issue D9, pp. 10863–10882.
  24. Thomson R.E., Emery W.J., Data Analysis Methods in Physical Oceanography, Amsterdam: Elsevier Sci., 2014, 728 p.
  25. Weichman P.B., Glazman R.E., Spatial variations of passive tracer in a random wave field, J. Fluid Mechanics, 2002, Vol. 453, pp. 263–287.
  26. Zhang C., Hu C., Shang S., Müller-Karger F.E., Li Y., Dai M., Huang B., Ning X., Hong H., Bridging between SeaWiFS and MODIS for continuity of chlorophyll-a concentration assessments off Southeastern China, Remote Sensing of Environment, 2006, Vol. 102, pp. 250–263.