ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 321-339

The influence of Lunar-Solar gravity tide on the dynamics of atmosphere, ionosphere and ocean

D.S. Khabituev 1 , B.G. Shpynev 1 , A.V. Tatarnikov 1 , S.E. Scheglova 1 
1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
Accepted: 06.10.2017
DOI: 10.21046/2070-7401-2017-14-5-321-339
In this study we have carried out an investigation of day-to-day variations of geophysical parameters in atmosphere, ionosphere and ocean, caused by Lunar and Solar gravity tide. The main purpose of the study is to reveal the low-frequency (1–35 days) harmonics of solar-lunar gravity tide in variations of geophysical parameters. It is shown that combined Lunar-Solar tide is a complicated multimodal oscillation that changes with a number of periodicities, including syzygy period of 13.66 days and periods of lunar knots motion ~18.6 years. This investigation is performed by using the technique of current (sliding) spectrum, which allows complex time-frequency analysis of long data series. It is found that the strongest long-period gravitational tidal harmonics appear in variations of geomagnetic field and in ionosphere. In the troposphere and oceans the gravity tide produces indirect influence on these systems because they have their own internal oscillation modes which depend on orographic effects for atmosphere and on cost/bottom shape for oceans. Interaction of gravity tide with atmosphere and ocean systems can be considered as a self-oscillating system with the gravity tide as the determined external amplifier. This interaction produces in atmosphere and ocean the specific linear variations of oscillation frequency with hysteresis–like jumps of frequency around tidal modes.
Keywords: gravity tide, day-to-day variations of geophysical parameters, spectral analysis
Full text

References:

  1. Kuznetsov A.P., Kuznetsov S.P., Ryskin N.M., Nelineinye kolebaniya (Nonlinear oscillations), Moscow: Fizmatlit, 2002, 292 p.
  2. Lamb G., Gidrodinamika (Hydrodinamics), Moscow-Leningrad: Gostekhizdat, 1947, 928 p.
  3. Mel’khior P., Zemnye prilivy (Earth Tides), Moscow: Mir, 1968, 482 p.
  4. Molodenskii M.S., Uprugie prilivy, svobodnaya nutatsiya i nekotorye voprosy stroeniya Zemli (Elastic tides, free nutation of the Earth and some structural issues), 1953, No. 19. 146 p.
  5. Monin A.S., Shishkov Yu.A. Istoriya klimata (Climate history), Leningrad: Gidrometeoizdat, 1979, 407 p.
  6. Orlov I.I., Tekushchie spektry i ikh svoistva (Current spectra and their properties), Tr. 11 Konferentsii molodykh uchenykh “Gelio- i geofizicheskie issledovaniya” (Proc. 11th Conference of Young Scientists “Helio and Geophysical Studies”, 2009, Irkutsk, pp. 23–29.
  7. Orlov I.I., Il’in N.V., O tekushchikh spektrakh signalov (About current signal spectra), Radiolokatsiya. Navigatsiya. Svyaz’, Voronezh: izd-vo VGU, 2000, Vol. 1, pp. 361–365.
  8. Pertsev N.N., Dalin S.A., Perminov V.I., Vliyanie polusutochnykh i polumesyachnykh lunnykh prilivov na oblast’ mezopauzy po nablyudeniyam kharakteristik gidroksil’nogo sloya serebristykh oblakov (Effect of semi-diurnal lunar tides and semimonthly on the mesopause region according to the observations of the hydroxyl layer of noctilucent clouds characteristics ), Geomagnetizm i aeronomiya, 2015, Vol. 55, No. 6, pp. 839–848.
  9. Rytov S.M., O nekotorykh “paradoksakh”, svyazannykh so spektral’nym razlozheniem (About some paradoxes associated with the spectral decomposition), Uspekhi fizicheskikh nauk, 1946, Vol. 29, Issues 1–2, pp. 147–160.
  10. Sidorenkov N.S., Fizika nestabil’nostei vrashcheniya Zemli (Physics of the earth’s rotation instabilities), M.: Fizmatlit, 2002, 384 p.
  11. Suvorova E.V., Istochniki solnechnykh nemigriruyushchikh prilivov v srednei atmosfere: dis. dokt. fiz.-mat. nauk (Sources of non-migrating solar tides in the middle atmosphere: Doct. phys.-math. sci. thesis), Saint Petersburg, 2010, 115 p.
  12. Surdin V.G., Pyataya sila (Fifth force), M.: Matematicheskoe prosveshchenie, 2002, 39 p.
  13. Kharkevich A.A., Spektry i analiz (Spectra and analysis), Moscow: GIFML, 1962, 236 p.
  14. Chepmen S., Lindzen R., Atmosfernye prilivy (Atmospheric tides), Moscow: Mir, 1972, 292 p.
  15. Shpynev B.G., Oinats A.V., Lebedev V.P., Chernigovskaya M.A., Orlov I.I., Belinskaya A.Yu., Grekhov O.M., Proyavlenie gravitatsionnykh prilivov i planetarnykh poln v dolgovremennykh variatsiyakh geofizicheskikh parametrov (Manifestation of the tides and planetary waves in the long-term variations of geophysical parameters), Geomagnetizm i aeronomiya, 2014, Vol. 54, No. 4, pp. 1–13.
  16. Mathews P.M., Herring T.A., Buffett B.A., Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Earth’s interior, J. Geophysical Research, 2002, Vol. 107, Issue B4, pp. ETG 3-1–ETG 3-26.
  17. Mayr H.G., Mengel J.G., Chan K.L., Huang F.T., Middle atmosphere dynamics with gravity wave interactions in the numerical spectral model: Tides and planetary waves, Journal of Atmospheric and Solar-Terrestrial Physics, 2011, Vol. 73, pp. 711–730.
  18. Shpynev B. G., Churilov S.M., Chernigovskaya M.A., Generation of waves by jet stream instabilities in winter polar stratosphere/mesosphere, Journal of Atmospheric and Solar-Terrestrial Physics, 2015, pp. 201–215. DOI: 10.1016/j.jastp.2015.07.005.
  19. Wahr J.M., The forced nutations of an elliptical, rotating elastic and oceanless Earth, Geophysical Journal, 1981, Vol. 64, pp. 705–727.