ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 248-258

Evidences of accelerating the increase in the concentration of methane in the atmosphere after 2014: satellite data for the Arctic

L.N. Yurganov 1 , I. Leifer 2 , S. Vadakkepuliyambatta 3 
1 University of Maryland, Baltimore County, Baltimore, USA
2 Bubbleology Research International, Santa-Barbara, USA
3 Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT- The Arctic University of Norway, Tromsø, Norway
Accepted: 15.06.2017
DOI: 10.21046/2070-7401-2017-14-5-248-258
European orbital IASI/MetOP-A interferometer TIR radiation data were processed by NOAA for methane profiles and uploaded in a publicly accessible archive. Satellite measurements for the middle and high latitudes of the Northern Hemisphere reveal a concentration growth rate of 4–9 ppbv/year in 2010–2013 and up to 12–17 ppbv/year in the 2015–2016. Global estimates based on surface measurements of NOAA at coastal stations for the same periods show an increase from 5-6 ppbv/year after 2007 to 9–12 ppbv/year last two years. Satellite data allow analyzing the methane concentration both over land and over the Arctic seas in the absence of near-surface temperature inversions. The results of remote measurements are compared with direct aircraft measurements in summer-autumn Alaska during the CARVE experiment. The maximum anomalies of methane (in comparison with a relatively clean area between Scandinavia and Iceland) were observed in November-December over the sea surface along the coasts of Norway, Novaya Zemlya, Svalbard and other regions of the Arctic. Anomalies were insignificant in summer. Over the years, the winter anomalies (contrasts) grew: the maximum rate was recorded for the area to the west of Novaya Zemlya (9.4±3.7) ppbv/year. Above Alaska, the anomaly of methane concentration in summer, when the microbilogical sources are active, increased at a rate (2.6±1.0) ppbv/year. The locations of the maxima of the anomaly around Svalbard correspond to the observed methane seeps from the seabed and the predicted regions of dissociation of methane hydrates. The observed methane acceleration during the last two years does not necessarily indicate a long-term tendency: 2015–2016 was a strong El-Niño period.
Keywords: IASI, remote sensing, atmospheric methane, methane hydrates
Full text

References:

  1. Volodin E.M., Vliyanie istochnikov metana v vysokikh shirotakh severnogo polushariya na mezhpolusharnuyu assimetriyu ego kontsentratsii i na klimat (Influence of methane sources in Northern Hemisphere high latitudes on the interhemispheric asymmetry of its atmospheric concentration and climate), Izv. RAN. Fizika atmosfery i okeana, 2015, Vol. 51, No. 3, pp. 287–294.
  2. Dobrovol’skii A.D., Zalogin B.S., Morya SSSR (Seas of the USSR), Moscow, Izd-vo MGU, 1982, 146 p.
  3. Obzhirov A.I., Telegin Yu.A., Boloban A.V., Potoki metana i gazogidraty v Okhotskom more (Methane fluxes and gas hydrates in the Sea of Okhotsk), Podvodnie issledovaniya i robototekhnika, 2015, Vol. 19, No. 1, pp. 56–63.
  4. Solov’ev V.A., Ginzburg G.D., Obzhirov A.I., Duglas V.K., Gazovye gidraty Okhotskogo morya (Gas hydrates of the Sea of Okhotsk), Otechestvennaya geologiya, 1994, No. 2, pp. 10–17.
  5. Yurganov L.N., Leifer I., Otsenki emissii metana ot nekotorikh arkticheskikh i priarkticheskikh rayonov po dannym orbital’nogo interferometra IASI (Estimates of methane emission rates from some Arctic and sub-Arctic areas, based on orbital interferometer IASI data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 3, pp. 173–183.
  6. Yurganov L.N., Leifer I., Anomal’nye kontsentratsii atmosfernogo metana nad Okhotskim morem zimoi 2015/2016 gg.(Abnormal concentrations of atmospheric methane over the Sea of Okhotsk during 2015/2016 winter), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 3, pp. 231–234.
  7. Yurganov L.N., Leifer I., Lund-Myhre C., Sezonnaya i mezhgodovaya izmenchivost’ atmosfernogo metana nad moryami Severnogo Ledovitogo okeana po sputnikovym dannym (Seasonal and interannual variability of atmospheric methane over Arctic Ocean from satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 107–119.
  8. AMAP Assessment 2015: Methane as an Arctic climate forcer: Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 2015, 139 p.
  9. Budney J.W., Chang R.Y-W., Commane R., Daube B.C., Dayalu A., Dinardo S.J., Gottlieb E.W., Karion A., Lindaas J.O.W., Miller C.E., Miller J.B., Miller S., Pender M., Pittman J.V., Samra J., Sweeney C., Wofsy S.C., Xiang B., 2016, CARVE: L2 Merged Atmospheric CO2, CO, O3 and CH4 Concentrations, Alaska, 2012–2015, ORNL DAAC, Oak Ridge, Tennessee, USA. http://dx.doi.org/10.3334/ORNLDAAC/1402.
  10. Chang R.Y-W., Miller C.E., Dinardo S.J., Karion A., Sweeney C., Daube B.C., Henderson J.M., Mountain M.E., Eluszkiewicz J., Miller J.B., Bruhwiler L.M.P., Wofsy S.C., Methane emissions from Alaska in 2012 from CARVE airborne observations, Proceedings of the National Academy of Sciences of the United States of America, 2014, Vol. 111, No. 47, pp. 16694–16699.
  11. Chatterjee S., Hadi A.S., Influential observations, high leverage points, and outliers in linear regression, Statistical Science, 1986, Vol. 1, pp. 379–416.
  12. Damm E., Rudels B., Schauer U., Mau S., Dieckmann G., Methane excess in Arctic surface water-triggered by sea ice formation and melting, Scientific Reports, 2015, Vol. 5, 16179.
  13. Dlugokencky E.J., Bruhwiler L., White J.W.C., Emmons L.K., Novelli P.C., Montzka S.A., Masarie K.A., Lan P.M., Crotwell A.M., Miller J.B., Gatti L.V., Observational constraints on recent increases in the atmospheric CH4 burden, Geophysical Research Letters, 2009, Vol. 36, L18803.
  14. Fisher R.E., Sriskantharajah S., Lowry D., Lanoisellé M., Fowler C.M.R., James R.H., Hermansen O., Lund Myhre C., Stohl A., Greinert J., Nisbet-Jones P.B.R., Mienert J., Nisbet E.G., Arctic methane sources: isotopic evidence for atmospheric inputs, Geophysical Research Letters, 2011, Vol. 38, L21803.
  15. Leifer I., Melton C., Buckland K.N., Clarisse L., Coheur P., Frash J., Gupta M., Tratt D.M., Leen J.B., Van Damme M., Whitburn S., Yurganov L., Remote sensing and in situ measurements of methane and ammonia emissions from a megacity dairy complex: Chino, CA, Environmental Pollution, 2017, Vol. 221, pp. 37–51.
  16. Miller S., Miller C., Commane R., Chang R.-W., Dinardo S., Henderson J., Karion A., Lindaas0J., Melton J., Miller J., Sweeney C., Wofsy S., Michalak A., A multi-year estimate of methane fluxes in Alaska from CARVE atmospheric observations, Global Biogeochemical Cycles, 2016, Vol. 30, pp. 1441–1453.
  17. Myhre C.L., Ferré B., Platt S.M., Silyakova A., Hermansen O., Allen G., Pisso I., Schmidbauer N., Stohl A., Pitt J., Jansson P., Greinert J., Percival C., Fjaeraa A.M., O’Shea S.J., Gallagher M., Le Breton M., Bower K.N., Bauguitte S.J.B., Dalsøren S., Vadakkepuliyambatta S., Fisher R.E., Nisbet E.G., Lowry D., Myhre G., Pyle J.A., Cain M., Mienert J., Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere, Geophysical Research Letters, 2016, Vol. 43, pp. 4624–4631.
  18. Saunois M., Bousquet P., Poulter B., Peregon A., The global methane budget 2000–2012, Earth System Scientific Data, 2016, Vol. 8, pp. 697–751.
  19. Shakhova N., Semiletov I., Salyuk A., Yusupov V., Kosmach D., Gustafsson O., Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf, Science, 2010, Vol. 327, pp. 1246–1250.
  20. Varotsos C.A., Tzanis C.G., Sarlis N.V., On the progress of the 2015–2016 El Niño event, Atmospheric Chemistry and Physics, 2016, Vol. 16, pp. 2007–2011.
  21. Veloso M., Greinert J., Mienert J., De Batist M., A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: Examples from the Arctic offshore NW-Svalbard, Limnology Oceanography Methods, 2015, Vol. 13, pp. 267–287.
  22. Xiong X., Barnet C., Maddy E., Gambacorta A., King T., Wofsy S., Mid-upper tropospheric methane retrieval from IASI and its validation, Atmospheric Measurement Techniques, 2013, Vol. 6, pp. 2255–2265.