ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 87-99

Development of the methodology to update the information on a forest area using satellite imagery and small UAVs

R.A. Aleshko 1 , A.A. Alekseeva 1 , K.V. Shoshina 1 , Petrovich Bogdanov 2 , A.T. Guriev 1 
1 Northern (Arctic) Federal University, Arkhangelsk, Russia
2 Northern Research Institute of Forestry, Arkhangelsk, Russia
Accepted: 29.08.2017
DOI: 10.21046/2070-7401-2017-14-5-87-99
The article presents the most significant points of scientific and practical research on the application of satellite and aerial photographs to update information on a forest area. The work discusses unmanned aerial vehicles used for obtaining aerial photography, as well as their tactical and technical characteristics. It is shown how to update the data on a forest area using the methods of satellite image processing to record large changes in the vegetation cover and methods of processing detailed aerial images. Using the example of a trial plot, a technique for automated separation of crown contours, calculation of trunk diameter and timber stock in a forest area was described. Within the framework of the methodology, morphological methods of processing digital images, geoinformation tools for representing and processing spatial information, as well as results of statistical observations of leading scientists of forestry were used. The obtained results were checked on several trial plots by instrumental and eye measurements. The calculated error percentage is acceptable when carrying out a taxation survey. The methodology is applicable for automation thematic interpretation process of orthorectified aerial images with spatial resolution of 5–10 centimeters per pixel. The experiments presented in the article were carried out on the images of closed forests in the north of the Russia’s European part. The results of the research are used to update the obsolete forest taxation plans and taxation descriptions of forest areas.
Keywords: digital image processing, aerial photographs, satellite imagery, UAV, forest area, information updating
Full text

References:

  1. Aleshko R.A., Guriev A.T., Metodika tematicheskogo deshifrirovaniya sputnikovykh snimkov lesnykh territorii na osnove strukturnykh modelei (Methodology satellite images thematic interpretation of forest areas based on structural models), Izvestiya VUZov. Priborostroenie, 2013, Vol. 56, No. 7, pp. 76–77.
  2. Aleshko R.A., Guriev A.T., Strukturnoe modelirovanie vzaimosvyazei deshifrovochnykh priznakov sputnikovykh snimkov i taksatsionnykh parametrov lesnykh nasazhdenii (Structural modeling relationships between interpretive features of satellite imagery and forest inventory parameters), Trudy SPIIRAN, 2013, No. 29, pp. 180–189.
  3. Bogdanov A.P., Aleshko R.A., Shoshina K.V., Demidenko S.A., Ispolzovanie materialov detalnoi sputnikovoi semki dlya taksacii listvennicy sibirskoi v Arhangelskoj oblasti (Using of materials of detailed satellite imagery for the taxation of Siberian larch in the Arkhangelsk region), Izvestiya vysshih uchebnyh zavedenii. Lesnoi zhurnal, 2016, No. 1 (349), pp. 74–82. DOI: 10.17238/issn0536-1036.2016.1.74.
  4. Gusev I.I., Taksatsiya drevesnogo stvola srublennogo i rastushchego dereva (Taxation of trunk of felled or growing tree), Arkhangelsk: Izdatelstvo ALTI, 1992, 80 p.
  5. Kuzmichev V.V., Zakonomernosti rosta drevostoev (Regularities of forest stands growth). Novosibirsk: Nauka, 1977, 160 p.
  6. Sukhikh V.I., Aerokosmicheskie metody v lesnom khozyaistve i landshaftnom stroitelstve (Aerospace methods in forestry and landscape construction), Ioshkar-Ola: MarGTU, 2005, 392 p.
  7. Aleshko R.A., Guriev A.T., Shoshina K.V., Schenikov V.S., Development of methodology for visualization and processing of geospatial data, Scientific Visualization, 2015, Vol. 7, Issue 1, pp 20–29.
  8. Arslan S., Ozyurek E., Gunduz-Demir C., A color and shape based algorithm for segmentation of white blood cells in peripheral blood and bone marrow images, Cytometry, Part A, 2014, Vol. 85, Issue 6, pp. 480–490.
  9. Bater C., Wulder M.A., Coops N.C., Nelson R.F., Hilker T., Næsset E., Stability of sample-based scanning LiDAR-derived vegetation metrics for forest monitoring, IEEE Transactions on Geoscience and Remote Sensing, 2011, Vol. 49 (6), pp. 2385–2392.
  10. Dougherty E.R., Lotufo R.A., Hands-on Morphological Image Processing, SPIE Press, 2003, 272 p.
  11. Franklin S.E., Remote Sensing for Sustainable Forest Management, Lewis Publishers, 2001, 424 p.
  12. Gao H., Xue P., Lin W., A new marker-based watershed algorithm, Circuits and Systems, 2004, ISCAS’04. Proceedings of the 2004 International Symposium, Vol. 2, 2004, pp. 81–84.
  13. Guriev A.T., Aleshko R.A., Adapting the combined database of cartographic and attribute information of forest plantations by automating remote sensing data interpretation, Earth From Space — The most effective solutions, BKL Publishers, 2009, pp. 233–234.
  14. Karvelis P.S., Tzallas A.T., Fotiadis D.I., Georgiou I., A Multichannel Watershed-Based Segmentation Method for Multispectral Chromosome Classification, Medical Imaging, IEEE Transactions, 2008, Vol. 27, Issue 5, pp. 697–708.
  15. Letteboera M.M.J., Olsenb O.F., Damb E.B., Willemsc P.W.A., Viergevera M.A., Niessena W.J., Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm, Academic Radiology, 2004, Vol. 11, Issue 10, pp. 1125–1138.
  16. Ng H.P., Ong S.H., Foong K.W.C., Goh P.S., Nowinski W.L., Medical Image Segmentation Using K-Means Clustering and Improved Watershed Algorithm, Image Analysis and Interpretation, 2006 IEEE Southwest Symposium, 26–28 March 2006, pp. 61–65.
  17. Nguyen H.T., Worring M., Boomgaard R., Watersnakes: Energy-Driven Watershed Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, Vol. 25, No. 3, pp. 330–342.
  18. Parvati K., Prakasa Rao B.S., Mariya Das M., Image Segmentation Using Gray-Scale Morphology and Marker-Controlled Watershed Transformation, Discrete Dynamics in Nature and Society, 2008, Vol. 2008, 8 p. Article ID 384346, DOI:10.1155/2008/384346.
  19. Understanding Forest Disturbance and Spatial Pattern: Remote Sensing and GIS Approaches, Eds. Wulder M.A., Franklin S.E., CRC Press (Taylor and Francis), 2006, 246 p.
  20. Wulder M.A., Coops N.C., Hudak A.T., Morsdorf F., Nelson R., Newnham G., Vastarantag M., Status and prospects for LiDAR remote sensing of forested ecosystems, Canadian Journal of Remote Sensing, 2013, Vol. 39, No. S1, pp. S1–S5.