ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 300-320

Detection and assessment of cloud cover and precipitation parameters using data from MSU-MR radiometer of the polar-orbiting Meteor-M No. 2 for the European territory of Russia

E.V. Volkova 1 
1 State Research Centre of Space Hydrometeorology "Planeta", Moscow, Russia
Accepted: 25.09.2017
DOI: 10.21046/2070-7401-2017-14-5-300-320
A multispectral threshold technique, first created for AVHRR/NOAA data, has been developed and tested for automatic classification of MSU-MR/Meteor-M No. 2 data which provides day-and-night detection and assessment of cloud cover parameters (cloud mask, cloud types, cloud top height and temperature, water phase at cloud top, cloud bottom height, cloud thickness, cloud optical depth and thickness, cloud water content, total cloud water content, effective radius) as well as discrimination of precipitation zones (of different precipitation rate and type at ground, daily and monthly precipitation) and severe weather phenomena (hail, thunderstorm, icing) above any ground surface all year round. The validation of output information products, performed with ground-based conventional meteorological observations and climatic estimations as well as with independent satellite-based estimates of cloud cover and precipitation parameters, confirms the feasibility of developed techniques and reasonable accuracy of the output products which meets the demands of the World Meteorological Organization. Thus, the developed technique, being quite concurrent to those implemented in foreign satellite centers, is recommended for cloud monitoring over the European territory of Russia and neighboring countries.
Keywords: MSU-MR, Meteor, cloud mask, cloud top height, cloud type, precipitation zone, precipitation intensity
Full text


  1. Volkova E.V., Detektirovanie zon obledeneniya v oblachnom sloe po informatsii polyarno-orbital’nogo MISZ serii NOAA v umerennykh shirotakh v svetloe vremya sutok (Detection of icing zones in clouds in temperate zone in the daytime using AVHRR/NOAA day), Sovremennye problemy distantsionnogo zondirovaniya zemli iz kosmosa, 2008, Vol. 5, No. 1, pp. 435–440.
  2. Volkova E.V., Opredelenie sum osadkov po dannym radiometrov SEVIRI/Meteosat-9,10 i AVHRR/NOAA dlya Evropeiskoi territorii Rossii (Estimation of precipitation amount using SEVIRI/Meteosat-9 and AVHRR/NOAA day for the European Territory of Russia), Sovremennye problemy distantsionnogo zondirovaniya zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 163–177.
  3. Volkova E.V., Otsenki parametrov oblachnogo pokrova, osadkov i opasnykh yavlenii pogody po dannym radiometra AVHRR s MISZ serii NOAA kruglosutochno v avtomaticheskom rezhime (Day and night automatic estimation of cloud cover parameters, precipitation and weather hazards using AVHRR/NOAA day), Sovremennye problemy distantsionnogo zondirovaniya zemli iz kosmosa, 2013, Vol. 10, No. 3, pp. 66–74.
  4. Volkova E.V., Uspenskii A.B., Sravnitel’nyi analiz otsenok vysoty verkhnei granitsy oblachnosti po dannym radiometra AVHRR MISZ NOAA i meteorologicheskogo radiolokatora (Comparison of AVHRR/NOAA and radar estimation of cloud top height), Sovremennye problemy distantsionnogo zondirovaniya zemli iz kosmosa, 2009, Vol. 6, No. 2, pp. 104–110.
  5. Kalinin N.A., Smirnova A.A., Metodika raschyota vodnosti i vodozapasa kuchevo-dozhdevoi oblachnosti (A method of estimation of cloud water and cloud water content in Cumulonimbus), Vestnik Udmurtskogo universiteta. Biologiya. Nauki o zemle, 2008, No. 1, pp. 59–72.
  6. Mazin I.P., Khrgian A.H., Oblaka i oblachnaya atmosphera (Clouds and cloud atmosphere), Leningrad: Gidrometizdat, 1989, 647 p.
  7. Muchnik V.M., Fizika grozy (Thunderstorm physics), Leningrad: Gidrometizdat, 1974, 352 p.
  8. Khromov S.P., Mamontova L.I., Meteorologicheskii slovar’ (Meteorological dictionary), Leningrad: Gidrometizdat, 1974, 568 p.
  9. Shmeter S.M., Fizika konvektivnykh oblakov (Physics of convective clouds), Leningrad: Gidrometizdat, 1972, 232 p.
  10. Yasnogorodskaya M.M., Atlas oblakov (Atlas of clouds), Leningrad: Gidrometizdat, 1978, 268 p.
  11. Barnard J.C., Long C.N., A simple empirical equation to calculate cloud optical thickness using shortwave broadband measurements, J. Applied Meteorology and Climatology, 2004, Vol. 43, No. 7, pp. 1057–1066.
  12. Chen R., Wood R., Li Z., Ferraro R., Chang F.-L., Studing the vertical variation of cloud droplet effective radius using ship and space-borne remote sensing day, J. Geophysical Research, 2008, Vol. 113, D00A02, 8 p. DOI: 10.1029/2007JD009596.
  13. Chiu J.C., Marshak A., Huang C.-H., Carnai T., Hogan R.J., Giles D.M., Holben B.N., O’Connor E.J., Knyazikhin Y., Wiscombe W.J., Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network, Atmospheric Chemistry and Physics, 2012, Vol. 12, pp. 10313–10329. DOI: 10.5194/acp-12-10313-2012.
  14. Cotin L.F.L., Algorithm theoretical basis document for “Cloud products” (CMa-PGE01, CT-PGE02&CTTH-PGE03 v.1.4), SAF/NWC/CDOP/MFL/SCI/ATBD/01, Issue 1, Rev. 4, November 17, 2007, 69 p.
  15. Deneke H., Johnston S., Reuter M., Roebeling R., Tetslaff A., Thomas W., Wolters E., SAF CM scientific report. Validation of CM-SAF cloud products derived from MSG/SEVIRI day, Version 300 products: CFC, CTY, CTH/CTP/CTT, COT, CWP, CPH, SAF/CM/DWD/KNMI/SMHI/SR/CLOUDS-ORR/3, Ver. 1.2, July 3, 2007, 105 p.
  16. Dybbroe A., Hornquist S., Lavanant L., Marguinaud P., Cloud masking for the O&SI SAF global METOP/AVHRR SST product, Proceedings of the 2006 Satellite Conference, Helsinki, Finland, 12–16 June 2006, 8 p.
  17. EUMETSAT. OCA product verification, EUM/TSS/DOC/13/706263, Ver. 1, May 23, 2013, 42 p.
  18. Fernandez P., Algoritm theoretical basis document for “Precipitation products from cloud physical properties” (PPh-PGE14: PCPh v.1.0 & CRPh v.1.0), SAF/NWC/CDOP2/INM/SCI/ATBD/14, Issue 1, Rev. 0, July 15, 2013, 40 p.
  19. Gruber A., Levizzani V., Assessments of global precipitation products. A project of the WORLD Climate Research Programme Global Energy and Water Cycle Experiment (GEMEX) Radiation Panel, WCRP-128, May 2008, WMO/TD, No. 1430, 50 p.
  20. Heymsfield A.J., Matrosov S., Baum B., Ice water path — optical depth relationship for Cirrus and deep stratiform ice cloud layers, J. Applied Meteorology and Climatology, 2003, Vol. 42, No. 10, pp. 1369–1390.
  21. Hollmann R., Annual product quality assessment report 2012, SAF/CM/DWD/AQA/OR2013, Issue 1.1, October 15, 2013, 71 p.
  22. Hollmann R., CM SAF, Annual product quality assessment report 2014, SAF/CM/DWD/AQA/OR2015, Issue 1.1, May 29, 2015. 70 p.
  23. Huang J., Minnis P., Lin B., Yi Y., Fan T.-F., Sun-Mack S., Ayers J.K., Determination of ice-water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements, Geophusical Research Letters, 2006, Vol. 33, 5 p. L21801. DOI: 10.1029/2006GL027038.
  24. Ipe A., Bertrand C., Clerbaux N., Dewitte S., Gonzalez L., Validation and homogenization of cloud optical depth and cloud fraction retrievals for GERB/SEVIRI scene identification using Meteosat-7 day, Atmospheric Research, 2004, Vol. 72, pp. 17–37. DOI: 10.1016/j.atmosres.2004.03.010.
  25. Karlsson K.G., CM SAF Cloud, albedo, radiation dayset, AVHRR-based, Edition 1 (CLARA-A1). Cloud Products. Validation Report, SAF/CM/SMHI/VAL/Gac/CLD, Issue 1.2, April 30, 2012, 133 p.
  26. Karlsson K.G., Lockhoff M., Devasthale A., Dybbroe A., CM SAF: scientific report. Validation of CM-SAF cloud products derived from AVHRR day in the Arctic region, SAF/CM/SMHI/VAL/CFC_CTY_CTO_AVHRR_ARCTIC, Issue 1.1, May 5, 2009, 88 p.
  27. Karlsson K.G., Riihele A., Muller R., Meirink J.F., Sedlar J., Stengel M., Lockhoff M., Trentmann Y., Kaspar F., Hollmann R., Wolters E., CLARA-1: The CM SAF cloud, albedo and radiation dayset from 28yr of global AVHRR day, Atmospheric Chemistry and Physics. Discuss., 2013, Vol. 13, pp. 935–982.
  28. Kidd C., Levizzani V., Laviola S., Quantitative precipitation estimation from Earth observation satellites — Rainfall: State of Science, Geophysical Monograph Series 191. 2010, pp. 127–158.
  29. Kniffka A., Lockhoff M., Meirink J.F., Stengel M., CM SAF: validation report. SEVIRI cloud products, SAF/CM/DWD/VAL/SEV/CLD, Edition 1, Issue 1.2, October 16, 2013. 88 p.
  30. Meirink J.F., Roebeling R., Wolters E., Deneke H., CM SAF: algorithm theoretical basis document. Cloud physical products: AVHRR/SEVIRI, SAF/CM/KNMI/ATBD/CPP, Issue 1.1, June 06, 2010, 24 p.
  31. Pandey P., de Ridder K., Gillotay D., van Lipsig N.P.M., Estimating cloud optical thickness and associated UV irradiance from SEVIRI by implementing a semi-analytical cloud retrieval algorithm, Atmospheric Chemistry and Physics, 2012, Vol. 12, pp. 7961–7975. DOI: 10.5194/acp-12-7961-2012.
  32. Pincus R., Szczodrak M., Gu J., Austin P., Uncertainty in cloud optical depth estimates made from satellite radiance measurements, J. of Climate, 1995, Vol. 5, pp. 1453–1462.
  33. Reid J.S., Hobbs P.V., Rangno A.L., Hegg D.A., Relationships between cloud droplet effective radius, liquid water content, and droplet concentration for warm clouds in Brazil embedded in biomass smoke, J. of Geophysical Research, 1999, Vol. 104, No. D6, pp. 6145–6153.
  34. SAF CM. Products validation report summary, SAF/CM/DWD/PVRS/1, Ver. 2.0, June 28, 2005. 41 p.
  35. Sedlar J., Karlsson K.G., Algorithm theoretical baseline document. Joint cloud property histogram products AVHRR/SEVIRI (CM-SAF Products CM-11, CM-12), SAF/CM/SMHI/PDC/CTY, Issue 1.1, September 27, 2011, 18 p.
  36. Stengel V., Karlsson K.G., Meirink J.F., CM SAF. Product user manual. Clouds, SAF/CM/DWD/PUM/CLOUDS, Ver. 1.8, February 22, 2015, 99 p.
  37. Thoss A., Algorithm Theoretical Basis Document for SAF NWC/PPS “Cloud Mask” (CM-PGE01 v. 3.0 — patch 1), SAF/NWC/CDOP/SMHI-PPS/SCI/ATBD/1, Issue 2.3, August 17, 2010, 48 p.
  38. Yi L., Thies B., Zhang S., Shi X., Bendix J., Optical thickness and effective radius retrievals of low stratus and fog from MTSAT daytime day as a prerequisite for Yellow sea fog detection, Remote Sensing, 2016, Vol. 8, No. 8, 15 p. DOI: 10.3390/rs8010008.
  39. Yoo H., Li Z., Evaluation of cloud properties in the NOAA/NCEP global forecast system using multiple satellite products, Climate Dynamics, 2012, 19 p. DOI: 10.1007/s00382-012-1430-0.