ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 4, pp. 249-262

Studying the seasonal pattern of ionospheric variability over Eastern Siberia and Far East region from GPS/GLONASS data

A.S. Yasyukevich 1 , M.A. Chernigovskaya 1 , A.A. Mylnikova 1 , B.G. Shpynev 1 , D.S. Khabituev 1 
1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
Accepted: 25.05.2017
DOI: 10.21046/2070-7401-2017-14-4-249-262
We studied ionospheric variability from analysis of vertical total electron content (TEC) variations over the Eastern Siberia and Far East regions during the 2002–2015 period. TEC data were obtained from the phase of dual-frequency GPS/GLONASS receivers. We used TEC variation coefficient which is a normalized TEC dispersion in daytime to describe the high-frequency part of ionospheric variability. This coefficient represents the level of internal gravity waves (IGW) activity in the ionosphere. Analysis of the variability changes with season and solar and geomagnetic activity has revealed significant deviations of the TEC variation coefficient throughout a year. The lowest coefficient values are registered at all stations in summer months. The maximum of TEC variability level exists in winter and it exceeds up to 6 times the summer time variations. These variations are regularly observed from year to year and not associated with helio- geophysical conditions changes. The considered ionospheric variations are assumed to be caused by IGW propagating into thermosphere from the lower atmosphere. These mesoscale wave-like disturbances are generated in the spatially inhomogeneous, high-speed jet streams associated with winter stratospheric circumpolar vortex (CPV). Based on ECMWF ERA-Interim reanalysis data we revealed a significant increase in wave activity at the strato-mesosphere heights from November to February for all the years considered. Mesoscale wave-like disturbances generated within a CPV area can be partly transmitted upward. Propagating upward IGWs transfer atmospheric constituents into the mesosphere and lower thermosphere. This leads to molecular gas inflow or outflow at these heights altering, as a result, the [O]/[N2] ratio and causing ionospheric variation.
Keywords: middle and high atmosphere, ionosphere, atmospheric layers interaction, wave-like disturbances, TEC, GPS, GLONASS
Full text

References:

  1. Edemskiy I.K., Voeykov S.V., Yasyukevich Yu.V., Sezonnye i shirotnye variatsii parametrov volnovykh vozmushchenii MGD-prirody, generiruemykh solnechnym terminatorom (Seasonal and latitudinal variations of parameters of MHD-nature wave packets, generated by solar terminator), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 4, pp. 107–116.
  2. Chernigovskaya M.A., Ratovksy K.G., Shpynev B.G., Meteorologicheskie effekty ionosfernoi vozmushchennosti nad regionom Vostochnoi Sibiri po dannym vertikal’nogo radiozondirovaniya (Meteorological effects of ionospheric disturbances over East Siberia region, according to vertical radio sounding data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 3, pp. 39–48.
  3. Shpynev B.G., Chernigovskaya M.A., Khabituev D.S., Spektral’nye kharakteristiki atmosfernykh voln, generiruemykh zimnim stratosfernym struinym techeniem severnogo polushariya (Spectral characteristics of atmospheric waves generated by winter stratospheric jet stream in the Northern Hemisphere), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 120–131.
  4. Shpynev B.G., Chernigovskaya M.A., Kurkin V.I., Ratovsky K.G., Belinskaya A.Yu., Stepanov A.E., Bychkov V.V., Grigorieva S.A., Panchenko V.A., Korenkova N.A., Leschenko V.S., Mielich J., Prostranstvennye variatsii parametrov ionosfery severnogo polushariya nad zimnimi struinymi techeniyami (Spatial variations of the ionosphere parameters over the Northern Hemisphere winter jet streams), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 204–215.
  5. Afraimovich E.L., Astafyeva E.I., Demyanov V.V., Edemskiy I.K., Gavrilyuk N.S., Ishin A.B., Kosogorov E.A., Leonovich L.A., Lesyuta O.S., Palamartchouk K.S., Perevalova N.P., Polyakova A.S., Smolkov G.Y., Voeykov S.V., Yasyukevich Y.V., Zhivetiev I.V., A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena, J. Space Weather and Space Climate, 2013, Vol. 3, pp. A27-p19, DOI: 10.1051/swsc/2013049.
  6. Afraimovich E.L., Edemsky I.K., Voeykov S.V., Yasukevich Yu.V., Zhivetiev I.V., Spatio-temporal structure of the wave packets generated by the solar terminator, Advances in Space Research, 2009, Vol. 44, No. 7, pp. 824–835, DOI: 10.1016/j.asr.2009.05.017.
  7. Afraimovich E.L., Edemskiy I.K., Leonovich A.S., Leonovich L.A., Voeykov S.V., Yasyukevich Y.V., The MHD nature of night-time MSTIDs excited by the solar terminator, Geophysical Research Letters, 2009, Vol. 36, No. 15, pp. L15106. DOI: 10.1029/2009GL039803.36.
  8. Buonsanto M.J., Ionospheric Storms — A Review, Space Science Reviews, 1999, Vol. 88, No. 3/4, pp. 563–601. DOI :10.1023/A:100510753263.
  9. Chernigovskaya M.A., Shpynev B.G., Ratovsky K.G., Meteorological effects of ionospheric disturbances from vertical radio sounding data, J. Atmospheric and Terrestrial Physics, 2015, Vol. 136, pp. 235–243. DOI: 10.1016/j.jastp.2015.07.006.
  10. Chernigovskaya M.A., Shpynev B.G., Ratovksy K.G., Stepanov A.E., The Stratospheric Jet Stream Effects in the High-latitude Ionosphere According to Vertical Radio Sounding Data, PIERS Proceedings, Prague, Czech Republic, July 6–9, 2015, pp. 2562–2566.
  11. Ding F., Wan W., Liu L., Afraimovich E.L., Voeykov S.V., Perevalova N.P., A statistical study of large-scale traveling ionospheric disturbances observed by GPS TEC during major magnetic storms over the years 2003–2005, J. Geophysical Research, 2008, Vol. 13, pp. A00A01. DOI: 10.1029/2008JA013037.
  12. Dow J.M., Neilan R.E., Rizos C., The International GNSS Service in a changing landscape of Global Navigation Satellite Systems, J. Geodesy, 2009, Vol. 83, pp. 191–198. DOI: 10.1007/s00190-008-0300-3.
  13. Dudok De Wit T., Watermann J., Solar forcing of the terrestrial atmosphere, Comptes Rendus Geoscience, 2010, Vol. 342, No. 4, pp. 259–272.
  14. Frissell N.A., Baker J.B.H., Ruohoniemi J.M., Greenwald R.A., Gerrard A.J., Miller E.S., West M.L., Sources and characteristics of medium-scale traveling ionospheric disturbances observed by high-frequency radars in the North American sector, J. Geophysical Research. Space Physics, 2016, Vol. 121, pp. 3722–3739. DOI: 10.1002/2015JA022168.
  15. Fritts D.C., Alexander M.J., Gravity wave dynamics and effects in the middle atmosphere, Reviews Geophysics, 2003, Vol. 41, No. 1, pp. 1003–1066. DOI: 10.1029/2001RG000106.
  16. Gardner C.S, Liu A.Z., Wave-induced transport of atmospheric constituents and its effect on the mesospheric Na layer, J. Geophys. Res., 2010, Vol. 115, pp. D20302. DOI: 10.1029/2010JD014140.
  17. Gerrard A.J., Bhattacharya Y., Thayer J.P., Observations of in-situ generated gravity waves during a stratospheric temperature enhancement (STE) event, Atmospheric Chemistry and Physics, 2011, Vol. 11, No. 22, pp. 11,913–11,917. DOI: 10.5194/acp-11-11913-2011.
  18. Hocke K., Schlegel K., A review of atmospheric gravity waves and travelling ionospheric disturbances 1982-1995, Annales Geophysicae, 1996, Vol. 14, No 5, pp. 917-940.
  19. Hunsucker R.D., Atmospheric gravity waves generated in the high-latitude ionosphere. A review, Reviews of Geophysics and Space Physics, 1982, Vol. 20, No. 2, pp. 293–315.
  20. Hunsucker R.D., Hargreaves J.K., The High-Latitude Ionosphere and Its Effects on Radio Propagation, New York, Cambridge University Press, 2003. 617 p.
  21. Laštovička J., Forcing of the ionosphere by waves from below, J. Atmospheric and Solar-Terrestrial Physics, 2006, Vol. 68, pp. 479–497.
  22. Liou K., Newell P.T., Anderson B.J., Zanetti L., Meng C.-I., Neutral composition effects on ionospheric storms at middle and low latitudes, J. Geophysical Research, 2005, Vol. 110, pp. A05309. DOI: 10.1029/2004JA010840.
  23. Mukhtarov P., Pancheva D., Andonov B., Pashova L., Global TEC maps based on GNSS data: 1. Empirical background TEC model, J. Geophysical Research. Space Physics, 2013, Vol. 118, pp. 4594–4608. DOI: 10.1002/jgra.50413.
  24. Prölss G.W., Werner S., Vibrationally excited nitrogen and oxygen and the origin of negative ionospheric storms, J. Geophysical Research, 2002, Vol. 107, No. A2, pp. 1016. DOI: 10.1029/2001JA900126.
  25. Ratovsky K.G., Shi J.K., Oinats A.V., Romanova E.B., Comparative study of high-latitude, mid-latitude and low-latitude ionosphere on basis of local empirical models, Advances in Space Research, 2014, Vol. 54, No. 3, pp. 509-516.
  26. Russell C.T., Luhmann J.G., Jian L.K., How unprecedented a solar minimum? Reviews of Geophysics, 2010, Vol. 48, pp. RG2004. DOI: 10.1029/2009RG000316.
  27. Shpynev B.G., Churilov S.M., Chernigovskaya M.A., Generation of waves by jet-stream instabilities in winter polar stratosphere/mesosphere, J. Atmospheric and Solar-Terrestrial Physics, 2015, Vol. 136, pp. 201–215. DOI: 10.1016/j.jastp.2015.07.005(a).
  28. Shpynev B.G., Kurkin V.I., Ratovsky K.G., Chernigovskaya M.A., Belinskaya A.Yu., Grigorieva S.A., Stepanov A.E., Bychkov V.V., Pancheva D., Mukhtarov P., High-midlatitude ionosphere response to major stratospheric warming, Earth, Planets and Space, 2015, Vol. 67, article id. 18. DOI: 10.1186/s40623-015-0187-1(b).
  29. Tsuda T., Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation, Proc. Japan Academy. Series B, 2014, Vol. 90, No. 1, pp. 12–27.
  30. Vadas S.L., Horizontal and vertical propagation of gravity waves in thermosphere from lower atmospheric and thermospheric sources, J. Geophysical Research, 2007, Vol. 112, pp. A06305. DOI: 10.1029/2006JA011845.
  31. Vincent R.A., Gravity wave coupling from below: A review, Climate and Weather of the Sun-Earth System (CAWSES): Selected Papers from the 2007 Kyoto Symposium. Tokyo: TERRAPUB, 2009, pp. 279–293.
  32. Whiteway J.A., Duck T.J., Donovan D.P., Bird J.C., Pal S.R., Carswell A.I., Measurements of gravity wave activity within and around the Arctic stratospheric vortex, Geophysical Research Letters, 1997, Vol. 24, No. 11, pp. 1387–1390. DOI: 10.1029/97GL01322.
  33. Wu D.L., Waters J.W., Satellite observations of atmospheric variances: A possible indication of gravity waves, Geophysical Research Letters, 1996, Vol. 23, No. 24, pp. 3631–3634. DOI: 10.1029/96GL02907.
  34. Yasyukevich Yu.V., Mylnikova A.A., Polyakova A.S., Estimating the total electron content absolute value from the GPS/GLONASS data, Results in Physics, 2015, Vol. 5, pp. 32–33. DOI: 10.1016/j.rinp.2014.12.006.
  35. Yiğit E., Medvedev A.S., Internal waves coupling processes in Earth’s atmosphere, Advances in Space Research, 2015, Vol. 55, pp. 983–1003.