ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 4, pp. 179-192

On wind wave development in the Arctic seas based on AltiKa altimeter measurements

P.A. Golubkin 1 , V.N. Kudryavtsev 1, 2 , B. Chapron 3, 1 
1 Russian State Hydrometeorological University, St. Petersburg, Russia
2 Marine Hydrophysical Institute RAS, Sevastopol, Russia
3 Institut Français de Recherche pour l’Exploitation de la Mer, Plouzané, France
Accepted: 16.05.2017
DOI: 10.21046/2070-7401-2017-14-4-179-192
In this study, wind wave generation in the Arctic Ocean areas enclosed by land and/or sea ice is analyzed based on the Ka-band AltiKa satellite altimeter measurements. A correction for the standard AltiKa wind speed retrieval algorithm initially constructed for open ocean conditions is suggested to eliminate systematic errors introduced by wave age impact on the wind speed retrievals. The correction is based on a classical expression for normalized radar cross section (NRCS) measurements at nadir incidence angle. To account for wind wave development, dependence of the «large-scale» sea surface mean square slope on wave age was introduced to the NRCS model. Application of this correction leads to notable improvements in the retrieved wind speed, which is crucial for wind wave generation studies. Altimeter wave height measurements were analyzed using a wave generation model that provides generalization of the classical theory of wind wave growth similarity for the case of non-uniform wind field. When analyzed in terms of dimensionless energy and dimensionless fetch, with wind speed averaged for all points between the initial and corresponding measurement, the measurements were found to be in agreement with known fetch laws. The approach which was suggested and tested in this study may serve as a simple tool for rapid estimation of significant wave heights in the Arctic seas.
Keywords: wind waves, satellite altimetry, SARAL/AltiKa, wind speed, Arctic
Full text


  1. Kitaigorodskii S.A., Nekotorye prilozheniya metodov teorii podobiya pri analize vetrovogo volneniya kak veroyatnostnogo protsessa (Applications of the theory of similarity to the analysis of wind-generated wave motion as a stochastic process), Izv. Geophys. Ser. Acad. Sci., USSR, 1962, No. 1, pp. 105 117.
  2. Ardhuin F., Collard F., Chapron B., Girard‐Ardhuin F., Guitton G., Mouche A., Stopa J.E., Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel‐1A, Geophys. Res. Lett., 2015, Vol. 42, No. 7, pp. 2317–2325. DOI: 10.1002/2014GL062940.
  3. Badulin S.I., Babanin A.V., Zakharov V.E., Resio D., Weakly turbulent laws of wind-wave growth, J. Fluid Mech., 2007, Vol. 591, pp. 339-378. DOI: 10.1017/S0022112007008282.
  4. Dumont D., Kohout A., Bertino L., A wave‐based model for the marginal ice zone including a floe breaking parameterization, J. Geophys. Res., 2011, Vol. 116, No. C4. DOI: 10.1029/2010JC006682.
  5. Elfouhaily T., Chapron B., Katsaros K., Vandemark D., A unified directional spectrum for long and short wind‐driven waves, J. Geophys. Res., 1997, Vol. 102, No. C7, pp.015781–15796. DOI: 10.1029/97JC00467.
  6. Farjami H., Golubkin P., Chapron B., Impact of the sea state on altimeter measurements in coastal regions, Rem. Sens. Lett., 2016, Vol. 7, No. 10, pp. 935–944. DOI: 10.1080/2150704X.2016.1201224
  7. Golubkin P.A., Chapron B., Kudryavtsev V.N., Wind waves in the Arctic seas: Envisat and AltiKa data analysis, Marine Geodesy, 2015, Vol. 38, No. 4, pp. 289–298. DOI: 10.1080/01490419.2014.990592.
  8. Gourrion J., Vandemark D., Bailey S., Chapron B., Gommenginger G.P., Challenor P.G., Srokosz M.A., A two-parameter wind speed algorithm for Ku-band altimeters, J. Atmos. Oceanic Technol., 2002, Vol. 19, No. 12, pp. 2030–2048. DOI: 10.1175/1520-0426(2002)019<2030:ATPWSA>2.0.CO;2.
  9. Kohout A.L., Meylan M.H., An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone, J. Geophys. Res., 2008, Vol. 113, No. C9. DOI: 10.1029/2007JC004434.
  10. Kudryavtsev V., Hauser D., Caudal G., Chapron B., A semiempirical model of the normalized radar cross‐section of the sea surface 1. Background model, J. Geophys. Res., 2003, Vol. 108, No. C3. DOI: 10.1029/2001JC001003.
  11. Kudryavtsev V., Golubkin P., Chapron B. A simplified wave enhancement criterion for moving extreme events, J. Geophys. Res., 2015, Vol. 120, No. 11, pp. 7538–7558. DOI: 10.1002/2015JC011284.
  12. Lillibridge J., Scharroo R., Abdalla S., Vandemark D., One-and two-dimensional wind speed models for Ka-band altimetry, J. Atmos. Oceanic Technol., 2014, Vol. 31, No. 3, pp. 630–638. DOI: 10.1175/JTECH-D-13-00167.1.
  13. Parkinson C.L., Comiso J.C., On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm, Geophys. Res. Lett., 2013, Vol. 40, No. 7, pp. 1356–1361. DOI: 10.1002/grl.50349.
  14. Squire V.A., Moore S.C., Direct measurement of the attenuation of ocean waves by pack ice, Nature, 1980, Vol. 283, pp. 365–368. DOI: 10.1038/283365a0.
  15. Tolman H.L., Treatment of unresolved islands and ice in wind wave models, Ocean Modellin, 2003, Vol. 5, No. 3, pp. 219−231. DOI: 10.1016/S1463-5003(02)00040-9.
  16. Wadhams P., Squire V.A., Goodman D.J., Cowan A.M., Moore S.C., The attenuation rates of ocean waves in the marginal ice zone, J. Geophys. Res., 1988, Vol. 93, No. C6, pp. 6799–6818. DOI: 10.1029/JC093iC06p06799.
  17. Williams T.D., Bennetts L.G., Squire V.A., Dumont D., Bertino L., Wave–ice interactions in the marginal ice zone. Part 2: Numerical implementation and sensitivity studies along 1D transects of the ocean surface, Ocean Modelling, 2013, Vol. 71, pp. 92–101. DOI: 10.1016/j.ocemod.2013.05.011.