ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 4, pp. 235-248

Studying the ionosphere response to severe geomagnetic storm in March 2015 according to Eurasian ionosonde chain

B.G. Shpynev 1 , N.A. Zolotukhina 1 , N.M. Polekh 1 , M.A. Chernigovskaya 1 , K.G. Ratovsky 1 , A.Yu. Belinskaya 2 , A.E. Stepanov 3 , V.V. Bychkov 4 , S.A. Grigorieva 5 , V.A. Panchenko 6 , N.A. Korenkova 7 , J. Mielich 8 
1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
2 A.A. Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, Russia
3 Institute of Cosmophysical Research and Aeronomy SB RAS, Yakutsk, Russia
4 Institute of Cosmophysical Researches and Radio Wave Propagation FEB RAS, Paratunka, Russia
5 Institute of Geophysics UB RAS, Yekaterinburg, Russia
6 N.V. Pushkov Institute of Terrestrial Magnetizm Ionosphere and Radio Wave Propagation RAS, Moscow, Russia
7 West Department of Pushkov Institute of Terrestrial Magnetism Ionosphere and Radio wave Propagation RAS, Kaliningrad, Russia
8 Leibniz Institute for Atmospheric Physics, Kühlungsborn, Germany
Accepted: 25.05.2017
DOI: 10.21046/2070-7401-2017-14-4-235-248
We studied the ionosphere response to severe geomagnetic storm in March 2015 on the basis of high midlatitude ionosonde chain of the Eurasian continent. For analysis of the geomagnetic field variations, we used the magnetometers data for the northern hemisphere, particularly from the INTERMAGNET data set. On the basis of the ionosonde chain data, we studied the time/longitude dynamics of the high-middle latitude ionosphere over the Eurasian continent during the geomagnetic storm. Special handle processing was performed during the ionograms analysis, which purpose was to detect the time intervals when the main ionospheric trough crossed the ionosondes positions. The criterion for such displacement of the main ionospheric trough equatorial wall was recording of the auroral type ionogram. During the storm, all stations detected the ionograms typical for the auroral ionosphere. Few observational points were located within the zone where the ionosondes showed full signal absorption. All the ionosondes detected irregular structures of the lower ionosphere, such as specific sporadic layers and travelling ionospheric disturbances. The investigation showed that during the storm, there existed a significant longitudinal inhomogeneity of the ionosphere response to the disturbances propagation from high to low latitudes. We assume that the storm-associated ionosphere dynamics is determined by the lower thermosphere disturbances due to the auroral electrojet amplifications producing the enhanced neutral wind and turbulences; these, in turn, uplift the molecular gas to the ionospheric heights. This process decreases the [O]/[N2] ratio and, consequently, the electron density. We found that after the storm, the disturbed thermosphere region moved westward and existed for more than three days. Such mechanism was confirmed by the ultraviolet imager GUVI TIMED data, where the low [O]/[N2] area moved westward over the analyzed region during and after the geomagnetic storm.
Keywords: ionosonde chain, ionospheric disturbances, geomagnetic storm, geomagnetic field variations
Full text

References:

  1. Mamrukov A.P., Khalipov V.L., Filippov L.D., Stepanov A.E., Zikrach E.K., Smirnov V.F., Shestakova L.V., Geofizicheskaya informatsiya po naklonnym radiootrazheniyam v vysokikh shirotakh i ikh klassifikatsiya (Geophysical information slanted radio reflections at high latitudes and their classification), Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa, Novosibirsk: SB RAS, 2000, Issue 111, pp. 14–27.
  2. Polekh N.M., Zolotukhina N.A., Romanova E.B., Ponomarchuk S.N., Kurkin V.I., Podlesnyi A.V., Ionospheric effects of magnetospheric and thermospheric disturbances on March 17–19, 2015, Geomagnetism and Aeronomy, 2016, Vol. 56, No. 5, pp. 557–571. DOI: 10.1134/S0016793216040174.
  3. Tashchilin A.V., Romanova E.B., Role of magnetospheric convection and precipitation in the formation of the “Dusk Effect” during main phase of a magnetic storm, Geomagnetism and Aeronomy, 2011, Vol. 51, No. 4, pp. 468–474.
  4. Shpynev B.G., Chernigovskaya M.A., Kurkin V.I., Ratovsky K.G., Belinskaya A.Yu., Stepanov A.E., Bychkov V.V., Grigorieva S.A., Panchenko V.A., Korenkova N.A., Leschenko V.S., Mielich J., Prostranstvennye variatsii parametrov ionosfery severnogo polushariya nad zimnimi struinymi techeniyami (Spatial variations of the ionosphere parameters over the Northern Hemisphere winter jet streams), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 204–215.
  5. Afraimovich E.L., Palamartchouk K.S., Perevalova N.P., GPS radio interferometry of travelling ionospheric disturbances, J. Atmos. Terr.Phys., 1998, Vol. 60. pp. 1205–1223.
  6. Buonsanto M.J., A case study of the ionospheric storm dusk effect, J. Geophys. Res., 1995, Vol. 100, No. A12, pp. 23857–23869. DOI: 10.1029/95JA02697.
  7. Buonsanto M.J., Ionospheric storms — a review, Space Sci. Rev., 1999, Vol. 88, pp. 563–601.
  8. Danilov A.D., Long-term trends of foF2 independent on geomagnetic activity, Ann. Geophys., 2003, Vol. 21, No. 5, pp. 1167–1176.
  9. Foster J.C., Storm time plasma transport at middle and high latitudes, J. Geophys. Res., 1993, Vol. 98, pp. 1675–1689.
  10. Fuller-Rowell T.J., Codrescu M.V., Moffett R.J., Quegan S., Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 1994, Vol. 99, pp. 3893–3914.
  11. Goncharenko L.P., Salah J.E., van Eyken A., Howells V., Thayer J.P., Taran V.I., Shpynev B., Zhou Q., Chan J., Observations of the April 2002 geomagnetic storm by the global network of incoherent scatter radars, Ann. Geophys., 2005, Vol. 23, No. 1, pp. 163–181.
  12. Hocke K., Schlegel K., A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995, Ann. Geophys., 1996, Vol. 14, pp. 917–940.
  13. Klimenko M.V., Klimenko V.V., Ratovsky K.G., Goncharenko L.P., Fagundes R.R., de Jesus R., de Abreu A.J., Vesnin A.M., Numerical modeling of ionospheric effects in the middle- and lowlatitude F region during geomagnetic storm sequence of 9–14 September 2005, Radio Sci., 2011, RS0D03. DOI: 10.1029/2010 RS004 590.
  14. Krasheninnikov I., Pezzopane M., Scotto C., Application of Autoscala to ionograms recorded by the AIS-Parus ionosonde, Computers & Geoscience, 2010, Vol. 36, pp. 628–635. DOI: 10.1016/j.cageo.2009.09.013.
  15. Laštovička J., Monitoring and forecasting of ionospheric space weather — effects of geomagnetic storms, J. Atmos. Sol. Terr. Phys., 2002, Vol. 64, pp. 697–705. DOI: 10.1016/S1364-6826(02)00031-7.
  16. Laštovička J., Forcing of the ionosphere by waves from below, J. Atmos. Sol. Terr. Phys., 2006, Vol. 68, pp. 479–497.
  17. Liou K., Newell P.T., Anderson B.J., Zanetti L., Meng C.-I., Neutral composition effects on ionospheric storms at middle and low latitudes, J. Geophys. Res., 2005, Vol. 110, pp. A05309. DOI: 10.1029/2004JA010840.
  18. Lu G., Pi X., Richmond0A.D., Roble R.G., Variations of total electron content during geomagnetic disturbances: a model/observation comparison, Geophys. Res. Lett., 1998, Vol. 25, pp. 253–256.
  19. Prölss G.W., Werner S., Vibrationally excited nitrogen and oxygen and the origin of negative ionospheric storms, J. Geophys. Res., 2002, Vol. 107, No. A2, pp. 1016. DOI: 10.1029/2001JA900126.
  20. Reinisch B.W., Haines D.M., Bibl K., Galkin I., Huang X., Kitrosser D.F., Sales G.S., Scali J.L., Ionospheric sounding support of OTH radar, Radio Sci., 1997, Vol. 32, No. 4, pp. 1681–1694.
  21. Shpynev B.G., Kurkin V.I., Ratovsky K.G., Chernigovskaya M.A., Belinskaya A.Yu., Grigorieva S.A., Stepanov A.E., Bychkov V.V., Pancheva D., Mukhtarov P., High-midlatitude ionosphere response to major stratospheric warming, Earth, Planets and Space, 2015, Vol. 67, id 18, 10 p. DOI: 10.1186/s40623-015-0187-1.
  22. Shpynev B.G., Kurkin V.I., Ratovsky K.G., Chernigovskaya M.A., Belinskaya A.Yu., Grigorieva S.A., Stepanov A.E., Bychkov V.V., Panchenko V.A., Korenkova N.A., Leschenko V.S., Ionosphere Response to Stratospheric Circulation in High-midlatitudes, PIERS Proceedings, Prague, Czech Republic, July 6–9, 2015, pp. 2534–2538.
  23. Wu C.C., Liou K., Lepping R.P., Hutting L., Plunkett S., Howard R.A., Socker D., The first super geomagnetic storm of solar cycle 24: “The St. Patrick’s day event (17 March 2015)”, Earth, Planets and Space, 2016, Vol. 68, id 151. DOI: 10.1186/s40623-016-0525-y.