ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 271-287

Simulation of rough sea surface microwave emission on the basis of experimental data

D.S. Sazonov 1 
1 Space Research Institute RAS, Moscow, Russia
Accepted: 17.04.2017
DOI: 10.21046/2070-7401-2017-14-3-271-287
In this paper, the MiROSE model (Microwave Rough Ocean Surface Emission model) of microwave rough water surface emission is developed. This model is based on experimental studies of rough water surface emission at a frequency of 37.5 GHz (wavelength ~8 mm). Experimental data were obtained on the oceanographic platform in the Black Sea near the Katsiveli settlement. To develop the model, the data obtained during experiments in 2005 and 2007 were used. The 2009 experiment data were used to test the developed model. MiROSE represents the functional dependence of the wind speed sensitivity of brightness temperature on incidence angle, wind speed and temperature range. Using this model the brightness contrast and brightness temperature of rough water surface can be calculated. The model is applicable for water temperatures of 12.5 to 25°C, wind velocities of 3 to 13 m/s and incidence angles of 30 to 80 degrees from nadir. A comparison of MiROSE with other models of rough water surface emission in the microwave range is presented.
Keywords: remote sensing, brightness temperature, brightness contrast, modeling, radiometer, microwave emission, angle dependence of wind speed sensitivity, wind speed retrieval
Full text

References:

  1. Bendat J.S., Piersol A.G., Random data analysis and measurement procedures, Moscow: Mir, 1989, 540 p.
  2. Kuzmin A.V., Goryachkin Yu.A., Ermakov D.M., Ermakov S.A., Komarova N.Yu., Kuznetsov A.S., Repina I.A., Sadovskii I.N., Smirnov M.T., Sharkov E.A., Chukharev A.M., Morskaya gidrofizicheskaya platforma “Katsiveli” kak podsputnikovyi poligon na Chernom more (Marine Hydrophysical platform “Katsiveli” as a subsatellite test site on the Black Sea), Issledovanie Zemli iz kosmosa, 2009, No. 1, pp. 31–44.
  3. Sadovskii I.N., Sharkov E.A., Kuzmin A.V., Sazonov D.S., Pashinov E.V., Obzor modelei kompleksnoi dielektricheskoi pronitsaemosti vodnoi sredy, primenyaemykh v praktike distantsionnogo zondirovaniya (The review of permittivity models of the aqueous medium, used in the practice of remote sensing), Issledovanie Zemli iz kosmosa, 2014, No. 6, pp. 79–92.
  4. Sadovskii I.N., Sravnenie variantov ucheta atmosfery pri provedenii podsputnikovykh radiopolyarimetricheskikh izmerenii (Comparison of methods to assess atmosphere radiation impact on ground-based radio-polarimetric measurements), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 1, pp. 190–199.
  5. Sazonov D.S., Dulov V.A., Sadovskii I.N., Chechina E.V., Kuzmin A.V., Podsputnikovye izmereniya asimmetrii uklonov vetrovykh voln gravitatsionnogo diapazona (Subsatellite measurements of slope asymmetry of gravitational wind waves), Ukrainskii metrologicheskii zhurnal, 2014, No. 1, pp. 54–58.
  6. Sazonov D.S., Kuz'min A.V., Sadovskii I.N., Eksperimental'nye issledovaniya zavisimosti intensivnosti radioteplovogo izlucheniya vzvolnovannoi morskoi poverkhnosti ot skorosti privodnogo vetra (Experimental Study of Thermal Radiation, Depending on the Water Surface Wind Speed), Issledovanie Zemli iz kosmosa, 2016, No. 1–2, pp. 25–34.
  7. Sazonov D.S., Korrelyatsionnyi analiz eksperimental'nykh distantsionnykh izmerenii i modelei mikrovolnovogo izlucheniya vzvolnovannoi vodnoi poverkhnosti (Correlation analysis of experimental remote measurements and models of microwave radiation of rough water surface), Issledovanie Zemli iz kosmosa, 2017, No. 3 (in print).
  8. Sharkov E.A., Radioteplovoe distantsionnoe zondirovanie zemli: Fizicheskie osnovy: v 2 t. (Radiothermal Remote Sensing of the Earth: Physical Foundations: in 2 v.), Moscow: IKI RAS, 2014, Vol. 1, 544 p.
  9. Apel J.R., An improved ocean surface wave vector spectrum, J. Geophys. Res., 1994, Vol. 99, No. S8, pp. 16.269–16.291.
  10. Durden S.L., Vesecky J.F., A physical radar cross-section model for a wind-driven sea with swell, IEEE J. of Oceanic Engineering, 1985, Vol. OE-10, No. 4, pp. 445–451.
  11. Dzura M.S., Etkin V.S., Khrupin A.S., Pospelov M.N., Raev M.D., Radiometers-Polarimeters: Principles of Design and Applications for Sea Surface Microwave Emission Polarimetry, Int. Geosci. Remote Sensing Symp. (IGARSS`92), Digest, Houston, TX, USA, 1992, Vol. 2, pp. 1432–1434.
  12. Elfouhaily T., Chapron V., Katsaros K., Vandemark D., A unified directional spectrum for long and short wind-driven waves, J. Geophys. Res., 1997, Vol. 102, No. S7, pp. 15.781–15.796.
  13. Meissner Th., Wentz F.J., The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and Earth incident angles, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 8, pp. 3004–3026.