ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 9-26

Multispectral nighttime remote sensing of the Earth

M.N. Zhizhin 1, 2, 3 , C.D. Elvidge 2 , А.А. Poyda 4, 3 
1 University of Colorado, Broomfield, USA
2 NOAA National Centers for Environmental Information, Boulder, USA
3 Space Research Institute RAS, Moscow, Russia
4 National Research Center Kurchatov Institute, Moscow, Russia
Accepted: 10.12.2016
DOI: 10.21046/2070-7401-2017-14-3-9-26
Modern low-orbiting and geostationary satellites are capable to observe the night side of the Earth in visible (0.4–1 µm) and multiple short/mid/long infrared bands (1–20 um). Traditional applications for the nighttime multispectral remote sensing are cloud cover and biomass burning. Clouds and fires are observed both at day and night, thus the detection methods are made universal and as a consequence less sensitive to the light sources at night. The nighttime satellite observations have no contamination from solar light and provide a window of opportunities for a new class of specialized multispectral methods and applications. The most comprehensive sensor for the night time multispectral remote sensing is Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-Orbiting Partnership (Suomi NPP) spacecraft. The paper provides a review of the new applications for nighttime remote sensing and special methods for the satellite image processing. The new applications include mapping of the stable nighttime lights, detection of the natural gas flares, and monitoring of the nighttime fishing boats inside the marine protected areas.
Keywords: nighttime remote sensing, multispectral remote sensing, DMSL, VIIRS, city lights, gas flares, fishing boat lights
Full text

References:

  1. Dozier J. A method for satellite identification of surface temperature fields of subpixel resolution, Remote Sensing of Environment, 1981, Vol. 11, pp. 221–229.
  2. Elvidge C.D., Baugh K., Zhizhin M., Hsu F.C., Why VIIRS data are superior to DMSP for mapping nighttime lights, Proceedings of the Asia-Pacific Advanced Network, 2013, V. 35, pp. 62−69. DOI: 10.7125/APAN.35.7.
  3. Elvidge C.D., Cinzano P., Pettit, Arvessen J., Sutton P.C., Small C., Nemani R., Longcore T., Rich C., Safran J., Ebener S., The Nightsat mission concept, Int. J. Remote Sens., 2007, Vol. 28, pp. 2645–2670.
  4. Elvidge C., Hsu F.C., Baugh K.E., Ghosh T., National Trends in Satellite Observed Lighting: 1992−2012, In: Global Urban Monitoring and Assessment Through Earth Observation, Boca Raton, FL, USA: CRC Press, 2014, pp. 97–120., ISBN 9781466564497.
  5. Elvidge C.D., Zhizhin M., Baugh K., Hsu F.-C., Automatic Boat Identification System for VIIRS Low Light Imaging Data. Remote Sens., 2015, Vol. 7, pp. 3020−3036. DOI: 10.3390/rs70303020.
  6. Elvidge C.D., Zhizhin M., Baugh K., Hsu F.-C., Ghosh T., Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data, Energies, 2015. Vol. 9, pp. 1−15. DOI: 10.3390/en9010014.
  7. Elvidge C.D., Zhizhin M., Hsu F.C., Baugh K., Khomarudin M.R., Vetrita Y., Sofan P., Suwarsono, Hilman D., Long-wave infrared identification of smoldering peat fires in Indonesia with nighttime Landsat data, Environ. Res. Lett., 2015, Vol. 10 (6), pp. 65002−65013. DOI: 10.1088/1748-9326/10/6/065002.
  8. Elvidge C.D., Zhizhin M., Hsu F.-C., Baugh K.E., VIIRS Nightfire: Satellite Pyrometry at Night, Remote Sensing of Environment, 2013, Vol. 5, pp. 4423−4449. DOI: 10.3390/rs5094423.
  9. Elvidge C.D., Ziskin D., Baugh K.E., Tuttle B.T., Ghosh T., Pack D.W., Erwin E.H., Zhizhin M., A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data, Energies, 2009, Vol. 2 (3), pp. 595−622.
  10. Hsu F.-C., Baugh K., Ghosh T, Zhizhin M., Elvidge C.D., DMSP-OLS Radiance Calibrated Nighttime Lights Time Series with Intercalibration, Remote Sens., 2015, Vol. 7, pp. 1855−1876. DOI: 10.3390/rs70201855.
  11. Huang Q., Yang X., Gao B., Yang Y., Zhao Y., Application of DMSP/OLS Nighttime Light Images: A Meta-Analysis and a Systematic Literature Review, Remote Sens., 2014, Vol. 6, pp. 6844−6866. DOI: 10.3390/rs6086844.
  12. Miller S.D., Straka W. III, Mills S.P., Elvidge C.D., Lee T.F., Solbrig J., Walther A., Heidinger A.K., Weiss S.C., Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band, Remote Sens., 2013, Vol. 5, pp. 6717−6766. DOI: 10.3390/rs5126717.
  13. Vu C.T., Phan T.D., Chandler D.M., S3: A spectral and spatial measure of local perceived sharpness in natural images, IEEE Trans. Image Process, 2012, Vol. 21, pp. 934–945.
  14. Witmer F., O’Loughlin J., Detecting the effects of wars in the Caucasus regions of Russia and Georgia using radiometrically normalized DMSP-OLS nighttime lights imagery, GISci. Remote Sens., 2011, Vol. 48, pp. 478–500.
  15. Wooster M.J., Roberts G., Perry G.L.W., Kaufman Y.J., Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release, Journal of Geophysical Research, 2005, Vol. 110, p. 311. DOI: 10.1029/2005JD006018.