ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 297-304

Arctic mesocyclones from satellite data, reanalyses data and model simulations

M.G. Akperov 1 , I.I. Mokhov 1, 2 , M.A. Dembickaya 1 
1 A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia
2 M.V. Lomonosov Moscow State University, Moscow, Russia
Accepted: 14.03.2017
DOI: 10.21046/2070-7401-2017-14-3-297-304
The ability of the reanalyses data (NASA-MERRA, ERA-INTERIM, NCEP-CFSR, ASR) and regional climate model simulations (RCM HIRHAM5) to represent polar mesocyclones (PMCs) over European sector of the Arctic (ESA) in comparison with satellite data (STARS project − Sea Surface Temperature and Altimeter Synergy for Improved Forecasting of Polar Lows). Our results show that reanalyses can represent up to 65% of concrete observed polar mesocyclones from satellite data for 2002−2008. It is noted that Arctic reanalysis ASR with high spatial resolution reproduces more PMCs than from other reanalyses with a coarser resolution. Noted differences in the characteristics of Arctic mesocyclones from reanalyses data are related both with the model structure and data assimilation methods.
RCM HIRHAM reproduces the same number of PMCs as Arctic reanalysis ASR with high spatial distribution. Models with a higher spatial resolution and with an adequate description of mesoscale processes in the Arctic are required to reproduce small-scale mesocyclones.
Keywords: Arctic, polar mesocyclones, reanalysis, satellite data, regional climate model
Full text

References:

  1. Akperov M.G., Bardin M.Yu., Volodin E.M., Golitsyn G.S., Mokhov I.I., Probability distributions for cyclones and anticyclones from the NCEP/NCAR reanalysis data and the INM RAS climate model, Izvestiya Atmos Ocean Phys, 2007, Vol. 43, No. 6, pp. 705–712.
  2. Akperov M.G., Mokhov I.I., A comparative analysis of the method of extratropical cyclone identification, Izvestiya Atmos OceanicPhys, 2010, Vol. 46, No. 5, pp. 574–590.
  3. Akperov M.G., Mokhov I.I., Estimates of the sensitivity of cyclonic activity in the troposphere of extratropical latitudes to changes in the temperature regime, Izvestiya Atmos. Oceanic Phys., 2013, Vol. 49, No. 2, pp. 13–120.
  4. Varentsov M.I., Verezemskaya P.S., Zabolotskikh E.V., Repina I.A., Otsenka kachestva vosproizvedeniya polyarnykh mezotsiklonov po dannym reanalizov i rezul'tatam regional'nogo klimaticheskogo modelirovaniya (Evaluation of the quality of polar low reconstruction using reanalysis and regional climate modelling), Issledovanie Zemli iz kosmosa, 2016, No. 4, pp. 168−191.
  5. Gurvich I.A., Mitnik M.L., Mitnik L.M., Ctatisticheskie kharakteristiki, struktura i parametry mezomasshtabnykh tsiklonov nad okhotskim morem po dannym sputnikovogo mikrovolnovogo i opticheskogo zondirovaniya (Statistical characteristics, structure and parameters of mesoscale cyclones over the Okhotsk Sea from satellite microwave and optical data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2009, Vol. 6, No. 2, pp. 111–117.
  6. Gurvich I.A., Pichugin M.K., Issledovanie kharakteristik intensivnykh mezomasshtabnykh tsiklonov nad dal'nevostochnymi moryami na osnove sputnikovogo mul'tisensornogo zondirovaniya (Research of characteristics of intensive mesoscale cyclones over the Far Eastern Seas on the basis of satellite multisensor sounding), Issledovanie Zemli iz kosmosa, 2013, Vol. 10, No. 1, pp. 51−59.
  7. Mokhov I.I., Akperov M.G., Lagun V.E., Lutsenko E.I., Intense arctic mesocyclones, Izvestiya Atmos Ocean Phys, 2007, Vol. 43, No. 3, pp. 259–265.
  8. Akperov M., Mokhov I.I., Rinke A., Dethloff K., Matthes H., Cyclones and their possible changes in the Arctic by the end of the twenty first century from regional climate model Simulations, Theoretical and Applied Climatology, 2015, Vol. 22, No. 1−2. pp. 85−96.
  9. Bromwich D.H., Hines K.M., Bai L.-S., Development and testing of Polar WRF: 2. Arctic Ocean, Journal of Geophysical Research: Atmospheres, 2009, Vol. 114, pp. D08122.
  10. Condron A., Bigg G. R., Renfrew I.A., Polar mesoscale cyclones in the northeast Atlantic: Comparing climatologies from ERA-40 and satellite imagery, Mon. Wea. Rev., 2006, Vol. 134, No. 5, pp. 1518–1533.
  11. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L,, Bidlot J.-R., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A., Haimberger L., Healy S., Hersbach H., Hólm E.V., Isaksen L., Kållberg P.W., Köhler M., Matricardi M., McNally A., Monge-Sanz BM., Morcrette J.-J., Peubey C., De Rosnay P., Tavolato C., Thepaut J,-J., Vitart F,, The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, 2011, Vol. 137, pp. 553–597.
  12. Dethloff K., Rinke A., Lehmann R., Christensen J.H., Botzet M., Machenhauer B., Regional climate model of the Arctic atmosphere, Journal of Geophysical Research, 1996, V. 101D, No. 18, pp. 23401–23422.
  13. Kolstad E.W., Bracegirdle T.J., Zahn M., Re‐examining the roles of surface heat flux and latent heat release in a “hurricane‐like” polar low over the Barents Sea, Journal of Geophysical Research: Atmospheres, 2016, Vol. 121, No. 13, pp. 7853−7867.
  14. Laffineur T., Claud C., Chaboureau J.-P., Noer G., Polar Lows over the Nordic Seas: Improved Representation in ERA-Interim Compared to ERA-40 and the Impact on Downscaled Simulations, Monthly Weather Review, 2014, Vol. 142, No. 6, pp. 2271–2289.
  15. Neu U., Akperov M.G., Bellenbaum N., Benestad R.S., Blender R., Caballero R., Cocozza A., Dacre H.F., Feng Y., Fraedrich K., Grieger J., Gulev S., Hanley J., Hewson T., Inatsu M., Keay K., Kew S.F., Kindem I., Leckebusch G.C., Liberato M.L.R., Lionello P., Mokhov I.I., Pinto J.G., Raible C.C., Reale M., Rudeva I., Schuster M., Simmonds I., Sinclair M., Sprenger M., Tilinina N.D., Trigo I.F., Ulbrich S., Ulbrich U., Wang X.L., Wernli H., IMILAST – a community effort to intercompare extratropical cyclone detection and tracking algorithms, Bulletin of the American Meteorological Society, 2013, Vol. 94, No. 4, pp. 529–547.
  16. Noer G., Saetra Ø., Lien T., Gusdal Y., A climatological study of polar lows in the Nordic Seas, Quarterly Journal of the Royal Meteorological Society, 2011, Vol. 137, No. 660, pp. 1762−1772.
  17. Rasmussen E.A., Turner J. Polar lows, Cambridge: Cambridge University press, 2003, 602 p.
  18. Rienecker M.M., Suarez M.J., Gelaro R., Todling R., Bacmeister J., Liu E., Bosilovich M., Schubert S., Takacs L., Kim G.-K., Bloom S., Chen J., Collins D., Conaty A., da Silva A., Gu W., Joiner J., Koster R., Lucchesi R., Molod A., Owens T., Pawson S., Pegion P., Redder C., Reichle R., Robertson F., Ruddick A., Sienkiewicz M., Woollen J., MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications, Journal of Climate, 2011, Vol. 24, pp. 3624–3648.
  19. Saha S., Moorthi S., Pan H.-L., Wu X., Wang J, Nadiga S., Tripp P., Kistler R., Woollen J., Behringer D., Liu H., Stokes D., Grumbine R., Gayno G., Wang J., Hou Y.-T., Chuang H., Juang H.-M.H., Sela J., Iredell M., Treadon R., Kleist D., Van Delst P., Keyser D., Derber J., Ek M., Meng J., Wei H., Yang R., Lord S., van den Dool H., Kumar A., Wang W., Long C., Chelliah M., Xue Y., Huang B., Schemm J.-K., Ebisuzaki W., Lin R., Xie P., Chen M., Zhou S., Higgins W., Zou Ch.-Zh., Liu Q., Chen Y., Han Y., Cucurull L., Reynolds R.W., Rutledge G., Goldberg M., The NCEP Climate Forecast System Reanalysis, Bulletin of American Meteorological Society, 2010, Vol. 91, pp. 1015–1057.
  20. von Storch H., Langenberg H., Feser F., A spectral nudging technique for dynamical downscaling purposes, Monthly Weather Review, 2000, Vol. 128, No. 10, pp. 3664–3673.
  21. Ulbrich U., Leckebusch G.C., Grieger J., Schuster M., Akperov M., Bardin M.Yu., Feng Y., Gulev S., Inatsu M., Keay K., Kew S.F., Liberato M.L.R., Lionello P., Mokhov I.I., Neu U., Pinto J.G., Raible C.C., Reale M., Rudeva I., Simmonds I., Tilinina N.D., Trigo I.F., Ulbrich S., Wang X.L., Wernli H., and the IMILAST team, Are Greenhouse Gas signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking methodology? Meteorologische Zeitschrift, 2013, Vol. 22, No. 1, pp. 61–68.
  22. Zappa G., Shaffrey L., Hodges K., Can polar lows be objectively identified and tracked in the ECMWF operational analysis and the ERA-Interim reanalysis? Monthly Weather Review, 2014, Vol. 142, No. 8, pp. 2596−2608.