ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 27-47

Review of mesoscale eddy detection and tracking algorithms

P.S. Petkilev 1 
1 I. Kant Baltic Federal University, Kaliningrad, Russia
Accepted: 21.03.2017
DOI: 10.21046/2070-7401-2017-14-3-27-47
The principal objective of this paper is to describe the most well-known and widely used algorithms of mesoscale eddies detection and tracking in the World Ocean. Considered algorithms are classified into types (physical, geometric, mixed) and then discussed in chronological order. The basic principles of these algorithms, the data required, and the main advantages and disadvantages are analyzed. In addition, efficiency parameters are given for some of the algorithms. Improvements in the detection and tracking algorithms led to a significant progress in the understanding of the distribution and dynamics of mesoscale eddies in the World Ocean. It is also shown, that a variety of methods used in the algorithms enables a rational choice of a particular algorithm based on the scientific goals and available resources. The factors constraining the development of algorithms and their implementation in research practice are also described. The prospects and ways of development of these algorithms are highlighted. The paper also briefly discusses open access datasets, created by means of the detection and tracking algorithms; these datasets contain information about the distribution of mesoscale eddies in the World Ocean.
Keywords: mesoscale eddies, algorithms, detection and tracking, remote sensing
Full text

References:

  1. Aleksanin A.I., Aleksanina M.G., Avtomaticheskoe vydelenie vikhrei po sputnikovym IK-izobrazheniyam (Automatic detection of eddies based on infrared (IR) images), Tr. Vseros. konf. “Sovremennye problemy distantsionnogo issledovaniya Zemli iz kosmosa” (All-Russia Conference on Current Problems in Remote Sensing of the Earth from Space), Moscow, 11–13 November 2003, Moscow: IKI RAS, 2004, pp. 382–386.
  2. Aleksanin A.I., Zagumennov A.A., Avtomaticheskoe vydelenie vikhrei okeana i raschet ikh formy (Automatic detection of ocean eddies and the estimation of its shapes), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Vol. 2, No. 5. pp. 17–21.
  3. Aleksanin A.I., Zagumennov A.A., Problemy avtomaticheskogo obnaruzheniya vikhrei okeana po sputnikovym IK-izobrazheniyam (The problems of automatic detection of ocean eddies based on satellite infrared (IR) images), Issledovaniye Zemli iz kosmosa, 2011. No. 3, pp. 65–74.
  4. Zhmur V.V., Mezomasshtabnye vikhri okeana (Mesoscale eddies in the ocean), Moscow: GEOS, 2011, 190 p.
  5. Kubryakov A.A., Belonenko T.V., Stanichnyi S.V., Vliyanie sinopticheskikh vikhrei na temperaturu morskoi poverkhnosti v severnoi chasti Tikhogo okeana (Impact of mesoscale eddies on sea surface temperature in the North Pacific Ocean), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016. Vol. 13. No. 2. pp. 34–43.
  6. Chaigneau, A., Pizarro O., Eddy characteristics in the eastern South Pacific, J. Geophys. Res., 2005, Vol. 110, C06005.
  7. Chaigneau S., Gizolme A., Grados C., Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatio-temporal patterns, Progr. Oceanogr., 2008, Vol. 79, pp. 106–119.
  8. Chelton D.B., Schlax M.G., Samelson R.M., de Szoeke R.A., Global observations of large oceanic eddies, Geophysical Research Letters, 2007, Vol. 34, No. 15. DOI: 10.1029/2007GL030812.
  9. Chelton D.B., Schlax M.G. Samelson R.M., Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 2011, Vol. 91, pp. 167–216.
  10. Cheng Y.-H., Ho C.-R., Zheng Q., Kuo N.-J., Statistical Characteristics of Mesoscale Eddies in the North Pacific Derived from Satellite Altimetry, Remote Sens., 2014, Vol. 6, pp. 5164–5183.
  11. Colas F., McWilliams J.C., Capet X., Kurian J., Heat balance and eddies in the Peru–Chile current system, Clim. Dyn., 2011, available at: http://dx.doi.org/10.1007/s00382-011-1170-6.
  12. Conti D., Orfila A., Mason E. Sayol J., Simarro G., Balle S., An eddy tracking algorithm based on dynamical systems theory, Ocean Dynamics, 2016, Vol. 66, 1415.
  13. Doglioli A.M., Blanke B., Speich S., Lapeyre G., Tracking coherent structures in a regional ocean model with wavelet analysis: Application to Cape Basin eddies, J. Geophys. Res., 2007, Vol. 112, C05043
  14. Dong C., Lin X., Liu Y., Nencioli F., Chao Y., Guan Y., Chen D., Dickey T., McWilliams J.C., Three-dimensional oceanic eddy analysis in the Southern California Bight from a numerical product, J. Geophys. Res., 2012, Vol. 117, C00H14.
  15. Faghmous J.H., Frenger I., Yao Y., Warmka R., Lindell A., Kumar V., A daily global mesoscale ocean eddy dataset from satellite altimetry, Sci. Data 2, 2015, 150028.
  16. Fang F., Morrow R., Evolution, movement and decay of warmcore Leeuwin Current eddies, Deep Sea Res.-Pt. II, 2003, Vol. 50, pp. 2245–2261.
  17. Isern-Fontanet J., García-Ladona E., Font J., Identification of marine vortices from altimetric maps, Journal of Atmospheric and Oceanic Technology, 2003, Vol. 20, pp. 772–778.
  18. Isern-Fontanet J., García-Ladona E., Font J., Vortices of the Mediterranean Sea: an altimetric perspective, Journal of Physical Oceanography, 2006, Vol. 36, pp. 87–103.
  19. Kubryakov A.A., Stanichny S.V., Mesoscale eddies in the Black Sea from satellite altimetry data, Oceanology, 2015a, Vol. 1, No. 55, pp. 56–67.
  20. Kubryakov A.A., Stanichny S.V., Seasonal and interannual variability of the Black Sea eddies and its dependence on characteristics of the large-scale circulation, Deep Sea Research Part I: Oceanographic Research Papers, 2015b, Vol. 97, pp. 80–91.
  21. Le Traon P.Y., From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography, Ocean Science, 2013, Vol. 9, pp. 901–915
  22. McWilliams J.C., The vortices of two-dimensional turbulence, J. Fluid Mech., 1990, Vol. 219, pp. 361–385.
  23. Morrow R., Birol F. Griffin D., Sudre J., Divergent pathways of cyclonic and anti-cyclonic ocean eddies, Geophys. Res. Lett., 2004, Vol. 31, L24311.
  24. Nencioli F., Dong C., Dickey T.D., Washburn L., McWilliams J.C., A vector geometry based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight, Journal of Atmospheric and Oceanic Technology, 2010, Vol. 27, No. 3, pp. 564–579.
  25. Okubo A., Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences, Deep Sea Research and Oceanographic Abstracts, 1970, Vol. 17, pp. 445–454.
  26. Penven P., Echevin V., Pasapera J., Colas F., Tam J., Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach, J. Geophys. Res., 2005, Vol. 110, C10021.
  27. Petersen M.R., Williams S.J., Maltrud M.E., Hecht M.W., Hamann B., A three-dimensional eddy census of a high-resolution global ocean simulation, J. Geophys. Res.-Oceans., 2013, Vol. 118, pp. 1759–1774.
  28. Sadarjoen A., Post F.H., Detection, quantification, and tracking of vortices using streamline geometry, Visualization and Computer Graphics, 2000, Vol. 24, pp. 333–341.
  29. Viikmäe B., Torsvik T., Quantification and characterization of mesoscale eddies with different automatic identification algorithms, Journal of Coastal Research, 2013, Special Issue No. 65. Vol. 2. pp. 2077—2082.
  30. Vortmeyer-Kley R., Gräwe U., Feudel U., Detecting and tracking eddies in oceanic flow fields: a Lagrangian descriptor based on the modulus of vorticity, Nonlin. Processes Geophys., 2016, Vol. 23, pp. 159–173.
  31. Weiss J., The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D., 1991, Vol. 48, pp. 273–294.
  32. Williams S., Petersen M., Bremer P.-T., Hecht M., Pascucci V., Ahrens J., Hlawitschka M., Hamann B., Adaptive extraction and quantification of geophysical vortices, IEEE T. Vis. Comput. Gr., 2011, Vol. 17, pp. 2088–2095.
  33. Xu Y., Li J., Dong S., Ocean circulation from satellite altimetry: progresses and challenges, Long A., Wells D. (eds.), Ocean Circulation and El Nino, New York. Nova Science Publishers, Inc., 2009, p. 291.
  34. Zhu Z., Moorhead R.J., Extracting and Visualizing Ocean Eddies in Time–Varying Flow Fields, 7th International Symposium on Flow Visualization, Seattle, WA, Sept. 11–14, 1995.