ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 2, pp. 209-220

The impact of solar and galactic cosmic rays on atmospheric vortex structures

N.I. Izhovkina 1 , S.N. Artekha 2 , N.S. Erokhin 2 , L.A. Mikhailovskaya 2 
1 N.V. Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS, Troitsk, Russia
2 Space Research Institute RAS, Moscow, Russia
Accepted: 07.02.2017
DOI: 10.21046/2070-7401-2017-14-2-209-220
The Earth's atmosphere is under the influence of ionizing and heat sources. Air pollutants (aerosols, in particular) affect the heating of the atmosphere, make ionized and condense moisture. Gyrotropy of the atmosphere is connected with the influence of the Coriolis force on the movement of particles, and for charged particles in the geomagnetic field – with the influence of the Lorentz force. Sources of suspended particles – aerosols – are diverse. Plasma vortices are built up in cellular spatial distributions of ionized aerosols. The maximum of ionization of atmospheric particles by cosmic rays corresponds to the heights of formation of tropospheric cloudiness. Condensation on aerosols is amplified with particle ionization, because these particles are hydrophilic. An important role of aerosols is manifested in generation of plasma vortices and in accumulation of energy and mass of the vortices in the atmosphere at when condensating. The genesis of cyclones and anticyclones is associated with nonlinear interaction of hydrodynamic and magnetohydrodynamic structures. The interaction with plasma vortices occurs at the rotary level. Since the process of formation of ionizing particles is a cascade one, the influence of cosmic rays on vortex atmospheric processes is essentially nonlinear. The influence of ionizing solar and galactic cosmic rays on the dynamics of plasma atmospheric vortices is enhanced with an increase in air pollution.
Keywords: gyrotropy, plasma vortices, the geomagnetic field, atmospheric electric fields, aerosol particles, cosmic radiation
Full text

References:

  1. Aburdzhania G.D., Samoorganizatsiya nelineinykh vikhrevykh struktur i vikhrevoi turbulentnosti v dispergiruyushchikh sredakh (Self-organizing nonlinear vortex structures and vortex turbulence in dispersive media), Moscow: KomKniga, 2006, 328 p.
  2. Avdyushin S.I., Danilov A.D., Solntse, pogoda i klimat – obzor (The sun, the weather and the climate – overview), Geomagnetizm i aeronomiya, 2000, Vol. 40, No. 5, pp. 3–14.
  3. Bondur V.G., Pulinets S.A., Kim G.A., O roli variatsii galakticheskikh kosmicheskikh luchei v tropicheskom tsiklogeneze na primere uragana Katrina (On the role of variations of galactic cosmic rays in tropical cyclogenesis on the example of Hurricane Katrina), DAN, 2008,Vol. 422, No. 2, pp. 244–249.
  4. Bondur V.G., Pulinets S.A., Vozdeistvie mezomasshtabnykh atmosfernykh vikhrevykh protsessov na verkhnyuyu atmosferu i ionosferu Zemli (The impact of mesoscale atmospheric vortex processes on the upper atmosphere and ionosphere of the Earth), Issledovanie Zemli iz kosmosa, 2012, No. 3, pp. 3–11.
  5. Izhovkina N.I., Plazmennye vikhri v ionosfere i atmosfere (Plasma vortices in the ionosphere and atmosphere), Geomagnetizm i aeronomiya, 2014, Vol. 54, No. 6, pp. 817–828.
  6. Izhovkina N.I., Erokhin N.S., Mikhailovskaya L.A., Artekha S.N., Osobennosti vzaimodeistviya plazmennykh vikhrei v atmosfere i ionosfere (Features of interaction of plasma vortices in the atmosphere and ionosphere), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 4, pp. 106–116.
  7. Izhovkina N.I., Afonin V.V., Karpachev A.T., Prutenskii I.S., Pulinets S.A., Struktura ionosfernogo provala dlya raznykh urovnei geomagnitnykh vozmushchenii i istochniki nagreva plazmy verkhnei dnevnoi ionosfery (The structure of the ionospheric trough for different levels of geomagnetic disturbances, and plasma heating sources of the upper daytime ionosphere), Geomagnetizm i aeronomiya, 1999, Vol. 39, No. 4, pp. 39–43.
  8. Izhovkina N.I., Potoki energii i chastits v neustoichivoi plazme s vikhrevymi strukturami v verkhnei ionosfere v neodnorodnom geomagnitnom pole (Energy and particle flows in the unstable plasma with vortex structures in the upper ionosphere in an inhomogeneous geomagnetic field), Geomagnetizm i aeronomiya, 2010, Vol. 50, No. 6, pp. 817–824.
  9. Izhovkina N.I., Artekha S.N., Erokhin N.S., Mihailovskaya L.A., Spiral'nye tokovye struktury v aerozol'noi atmosfernoi plazme (Spiral flow structures in the aerosol atmospheric plasma), Inzhenernaya fizika, 2016, No. 7, pp. 57–68.
  10. Karelin A.V., O vozmozhnosti kosmicheskogo monitoringa protsessov vozniknoveniya tropicheskikh uraganov (On the possibility of space monitoring processes of occurrence of tropical storms), Voprosy elektromekhaniki, 2009, Vol. 111, pp. 43–50.
  11. Mikhailovskaya L.A., Erokhin N.S., Krasnova I.A., Artekha S.N., Strukturnye kharakteristiki elektricheskoi turbulentnosti pri vertikal'nom profile elektricheskogo polya s sil'nym vspleskom (Structural characteristics of electrical turbulence for vertical profile of electric field with a strong splash), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 2, pp. 111–120.
  12. Mikhailovskii A.V., Teoriya plazmennykh neustoichivostei. T. 2. Neustoichivosti neodnorodnoi plazmy (Theory of plasma instabilities. Vol. 2. Instability of an inhomogeneous plasma), Moscow: Atomizdat, 1977, 312 p.
  13. Moiseev S.S., Sagdeev R.Z., Tur A.V., Yanovskii V.V., Teoriya vozniknoveniya krupnomasshtabnykh struktur v gidrodinamicheskoi turbulentnosti (The theory of large-scale structures origin in hydrodynamic turbulence), ZhETF, 1983, Vol. 85, No. 6 (12), pp. 1979–1987.
  14. Nezlin M.V., Chernikov G.P., Analogiya dreifovykh vikhrei v plazme i geofizicheskoi gidrodinamike (The analogy of drift vortices in the plasma and geophysical hydrodynamics), Fizika plazmy, 1995, Vol. 21, No. 11, pp. 975–999.
  15. Pudovkin M.I., Raspopov O.M., Mekhanizm vliyaniya solnechnoi aktivnosti na sostoyanie nizhnei atmosfery i meteorologicheskie parametry – obzor (The mechanism of influence of solar activity on the state of the lower atmosphere and meteorological parameters), Geomagnetizm i aeronomiya, 1992, Vol. 32, No. 5, pp. 1–22.
  16. Roederer H., Dynamics of geomagnetically trapped radiation, Moscow: Mir, 1972, 192 p.
  17. Artekha S.N., Belyan A.V., On the role of electromagnetic phenomena in some atmospheric processes, Nonlinear Processes in Geophysics, 2013, Vol. 20, pp. 293–304.
  18. Fierro A.O., Shao X.-M., Hamlin T., Reisner J.M., Harlin J., Evolution of eyewall convective events as indicated by intracloud and cloud-to-ground lightning activity during the rapid intensification of hurricanes Rita and Katrina, Month. Weather Rev., 2011, Vol. 139:5, pp. 1492–1504.
  19. Izhovkina N.I., Artekha S.N., Erokhin N.S., Mikhailovskaya L.A., Interaction of atmospheric plasma vortices, Pure and Applied Geophysics, 2016, Vol. 173, Issue 8, pp. 2945–2957.
  20. Leary L.A., Ritchie E.A., Lightning flash rates as an indicator of tropical cyclone genesis in the eastern north pacific, Month. Weather Rev., 2009, Vol. 137:10, pp. 3456–3470.
  21. Miroshnichenko L.I., Solar cosmic rays, Astrophysics and Space Science Library, Kluwer Academic Publishers: Dordrecht, 2001, Vol. 260, 480 p.
  22. Molinari J., Moore P.K., Idone V.P., Henderson R.W., Saljoughy A.B., Cloud-to-ground lightning in hurricane Andrew, J. Geophys. Res., 1994, Vol. 99, pp. 16665–16676.
  23. Monin A.S., Theoretical geophysical fluid dynamics, Dordrecht: Springer Netherlands, 1990.
  24. Pedlosky J. Geophysical fluids dynamics, New York: Springer, 1987, 710 p.
  25. Price C., Asfur M., Yair Yo., Maximum hurricane intensity preceded by increase in lightning frequency, Nature Geosci., 2009, Vol. 2:5, pp. 329–332.
  26. Shumilov O.I., Vashenyuk E.V., Henriksen K., Quasi-drift effects of high-energy solar cosmic rays in the magnetosphere, J. Geophys. Res., 1993, Vol. 98, No. A10, pp. 17423–17427.