ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 2, pp. 61-71

Microwave radiometric method for measuring soil temperature in Arctic tundra

V.L. Mironov 1, 2 , K.V. Muzalevskiy 1 , Z. Ruzicka 1 
1 L.V. Kirensky Institute of Physics SB RAS, Krasnoyarsk, Russia
2 M.F. Reshetnev Siberian State Aerospace University, Krasnoyarsk, Russia
Accepted: 20.03.2017
DOI: 10.21046/2070-7401-2017-14-2-61-71
In this paper, the results of radiothermal remote sensing of soil temperature at a test site on the Yamal Peninsula using full-polarimetry multi-angular brightness temperature (BT) observations at the frequency of 1.4 GHz are presented. The BT data were obtained from the Soil Moisture and Ocean Salinity (SMOS) satellite with the SMOS footprint near the Polar Weather Station Marresale and Vaskiny Dachi, the Russian Federation. The SMOS data covered the period from October 22, 2012 to May 10, 2014. The method to retrieve the soil temperature was based on solving an inverse problem by minimizing the norm of the residuals between the observed and predicted values of BT. The calculation of BT was performed using a semi-empirical model of radiothermal emission which incorporated an attenuation of microwaves in snow pack and a temperature-dependent multi-relaxation spectral dielectric model (TD MRSDM) for organic-rich tundra soil. The TD MRSDM was specifically designed on the base of laboratory measurements of complex permittivity of organic-rich soil samples collected at the test site on the Polar Weather Station Marresale. As a result, in case of frozen soil, the values of root-mean-square error (RMSE) and determination coefficient between the retrieved and measured soil temperatures were determined to be 4.5°C and 0.59, respectively. These results indicate the perspectives of using full-polarimetric multi-angular BT observations in the L-band for the purpose of measuring soil temperature in the Arctic region.
Keywords: microwave radiometry, soil measurements, temperature measurement, Arctic region
Full text

References:

  1. Bobrov P.P., Krivaltsevich S.V., Mironov V.L., Yaschenko A.S., The Effect of Frozen Soil Layer Thickness On Thermal Emission at the wavelength 3.6–11 cm, Russian Physics Journal, 2006, Vol. 49, No. 9, pp. 907–912.
  2. Bobrov P.P., Mironov V.L., Yashchenko A.S., Diurnal Dynamics of Soil Brightness Temperatures Observed at Frequencies of 1.4 and 6.9 GHz in the Processes of Freezing and Thawing, Journal of Communications Technology and Electronics, 2010, Vol. 55, No. 4, pp. 395–402.
  3. FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.
  4. Hachem S., Duguay C.R., Allard M., Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain, The Cryosphere, 2012, No. 6, pp. 51–69.
  5. Jones L.A., Kimball J.S., McDonald K.C., Chan S.T.K., Njoku E.G., Oechel W.C., Satellite Microwave Remote Sensing of Boreal and Arctic Soil Temperatures From AMSR-E, IEEE Trans. Geoscience and Remote Sensing, 2007, Vol. 45, No. 7, pp. 2004–2018.
  6. Kerr Y.H., Waldteufel P., Wigneron J.-P., Delwart S., Cabot F., Boutin J., Escorihuela M.-J., Font J., Reul N., Gruhier C., Juglea S.E., Drinkwater M.R., Hahne A., Martin-Neira M., Mecklenburg S., The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle, Proceedings of the IEEE, 2010, Vol. 98, No. 5, pp. 666–687.
  7. Mialon A., Coret L., Kerr Y.H., Secherre F., Wigneron J.-P., Flagging the Topographic Impact on the SMOS Signal, IEEE Transactions on Geoscience and Remote Sensing, 2008, Vol. 46, No. 3, pp. 689–694.
  8. Mironov V.L., Fomin S.V., Temperature Dependable Microwave Dielectric Model for Moist Soils, Proceedings of PIERS, 2009, pp. 831 – 835.
  9. Mironov V.L., De Roo R.D., Savin I.V., Temperature-Dependable Microwave Dielectric Model for an Arctic Soil, IEEE Transactions on Geoscience and Remote Sensing, 2010, Vol. 48, No. 6, pp. 2544–2556.
  10. Mironov V.L., Muzalevskiy K.V., Savin I.V., Retrieving Temperature Gradient in Frozen Active Layer of Arctic Tundra Soils From Radiothermal Observations in L-Band-Theoretical Modeling, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, Vol. 6, No. 3, pp. 1781–1785.
  11. Mironov V.L., Molostov I.P., Scherbinin V.V. Dielectric model of a mineral arctic soil thawed and frozen at 0.05–15 GHz, Proceedings of International Siberian Conference on Control and Communications (SIBCON), 2015a, pp. 1–7.
  12. Mironov V.L., Savin I.V., Muzalevskiy K.V., A Temperature-Dependent Multi-Relaxation Spectroscopic Dielectric Model for Thawed and Frozen Organic Soil at 0.05–15 GHz, Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2015b, Vol. 83–84, pp. 2031–2034.
  13. Mironov V., Savin I., A Temperature-Dependent Multi-Relaxation Spectroscopic Dielectric Model for Thawed and Frozen Organic Soil at 0.05–15 GHz, Physics and Chemistry of the Earth, Parts A/B/C, 2015c, pp. 57–64.
  14. NOAA's National Centers for Environmental Information. (2015). [Online]. WMO Weather Station Database. Available: ftp://ftp.ncdc.noaa.gov/pub/data/gsod/
  15. Pavlov A.V., Active layer monitoring in northern West Siberia, Proceedings of the Permafrost Seventh International Conference, 1998, pp. 101–110.
  16. Permarfrost Laboratory University of Alaska. (2015). [Online]. Marresale database. Available: http://permafrost.gi.alaska.edu/site/ms1 (/ms2, /ms3, /ms5).
  17. Toolik-Arctic Geobotanical Atlas. (2016). [Online]. Geobotanical Atlas. Available: http://www.arcticatlas.org/maps/catalog/
  18. Wigneron J.P., Kerr Y.H., Waldteufel P., Saleh K., Escorihuela M.-J., Richaume P., Ferrazzoli P., de Rosnay P., Gurney R., Calvet J.C., Grant J.P., Guglielmetti M., Hornbuckle B., Matzler C., Pellarin T., Schwank M., L-band microwave emission of the biosphere (L-MEB) model: Description and calibration against experimental data sets over crop fields, Remote Sensing of Environment, 2007, Vol. 107, pp. 639–655.
  19. Wigneron J., Chanzy A., Kerr Y.H., Lawrence H., Jiancheng Shi, Escorihuela M.J., Mironov V., Mialon A., Demontoux F., de Rosnay P., Saleh-Contell K., Evaluating an Improved Parameterization of the Soil Emission in L-MEB, IEEE Transactions on Geoscience and Remote Sensing, 2011, Vol. 49, No. 4, pp. 1177–1189.
  20. Wigneron J.P., Chanzy A., Kerr Y.H., Lawrence H., Jiancheng Shi, Escorihuela M.J., Mironov V., Mialon A., Demontoux F., de Rosnay P., Saleh-Contell K., Correction to “Evaluating an improved parameterization of the soil emission in L-MEB [Apr 11 1177-1189]”, IEEE Transactions on Geoscience and Remote Sensing, 2013, Vol. 51, No. 5, pp. 3200–3200.
  21. Ye N., Walker J.P., Guerschman J., Ryu D., Gurney R.J., Standing water effect on soil moisture retrieval from L-band passive microwave observations, Remote Sensing of Environment, 2015, Vol. 169, pp. 232–242.
  22. Zhao S., Zhang L., Zhang T., Hao Z., Chai L., Zhang Z., An empirical model to estimate the microwave penetration depth of frozen soil, Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2012, pp. 4493–4496.