ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 2, pp. 135-147

Primary production of phytoplankton and concentration of chlorophyll-a in the western part of the Japan/East Sea from remote sensing and field data

P.V. Lobanova 1 , V.I. Zvalinski 2 , P.Ya. Tishchenko 2 
1 Saint-Petersburg State University, Institute of Earth Science, Saint-Petersburg, Russia
2 V.I. Il`ichev Pacific Oceanological Institute, Vladivostok, Russia
Accepted: 13.04.2017
DOI: 10.21046/2070-7401-2017-14-2-135-147
Remote sensing of ocean colour allows to analyze spatial and temporal variability of chlorophyll-a concentration (Chl) in a subsurface layer and estimate primary production of phytoplankton (PP) at regional and global scales. However, improvement of remote sensing algorithms requires systematical validation of satellite data by in situ observations. In this work, we compare satellite-derived and field estimates of Chl and modeled PP in the western part of the Japan/East Sea (35-440 N, 130-1370 E) in spring 2004 and autumn 2005 and 2011. As satellite PP we use its VGPM estimates from Ocean Productivity database. Field PP is calculated on the base of in situ observations of Chl, assimilation value, diffuse attenuation coefficient and sea surface temperature using two models: VGPM and a model developed in V.I. Il’ichev Pacific Oceanological Institute (POI). Comparison shows fair correlation between satellite-derived and field data: r = 0.56 – 0.63 for modeled PP and r = 0.58 for Chl. Their averaged estimates for all stations of observation have small difference, which, however, may be about 1.5–1.7 times in some periods. On average, satellite Chl overestimates in situ observations, while satellite estimates of PP are less than PP calculated with the use of the model developed by POI but greater than PP calculated using VGPM. The difference between modeled satellite and field PP estimates is due to features of vertical distribution of Chl within the euphotic zone and the difference in values of assimilation number used in the models.
Keywords: chlorophyll-a concentration, primary production, models of primary production, the Japan/East Sea, ocean colour, remote sensing
Full text

References:

  1. Burenkov V.I., Kopelevich O.V., Sheberstov S.V., Vedernikov V.I., Podsputnikovye izmereniya tsveta okeana: verifikatsiya sputnikovykh dannykh skanera tsveta SeaWiFS (Sub-satellite ocean color measurements: verification of satellite data colour scanner SeaWiFS), Okeanologiya, 2000, Vol. 40, No. 3, pp. 357–362.
  2. Vedernikov V.I., Assimilyatsionnoe chislo i predely ego kolebanii v kul'turakh i prirodnykh populyatsiyakh planktonnykh vodoroslei (Assimilation number and the limits of its variations in cultures and natural populations of plankton algae), In: Okeanicheskii fitoplankton i pervichnaya produktsiya (Ocean phytoplankton and primary production), Moscow: Nauka, 1982, pp. 92– 112.
  3. Zakharkov S.P., Otchet gidrobiologicheskogo otryada (Report of hydro biological team), In: Nauchnyi otchet ob ekspeditsii TOI DVO RAN na NIS "Akademik M.A. Lavrent'ev" (Scientific report of cruise on SRS “Academician M.A. Lavrent'ev”), cruise No. 33, Vladivostok: POI, 2004.
  4. Zvalinskii V.I., Formirovanie pervichnoi produktsii v more (Process of primary production in the sea), Izvestiya TINRO, 2006, Vol. 147, pp. 276–302.
  5. Zvalinskii V.I., Lobanov V.B., Zakharkov S.P., Tishchenko P.Ya., Khlorofill, zamedlennaya fluorestsentsiya i pervichnaya produktsiya v severo-zapadnoi chasti Yaponskogo morya osen'yu 2000 (Chlorophyll, Delayed Fluorescence and Primary Production in Northwest Part of the Japan Sea in Autumn of 2000), Okeanologiya, 2006, Vol. 46, No. 1, pp. 27–37.
  6. Zvalinskii V.I., Tishchenko P.Ya., Modelirovanie fotosinteza i rosta morskogo fitoplanktona (Simulation of photosynthesis and growth of marine phytoplankton), Okeanologiya, 2016, Vol. 56, No. 4, pp. 1–15.
  7. Lobanova P.V., Bashmachnikov I.L., Brotash V., Analiz modelei pervichnoi produktsii na osnove sputnikovykh dannykh v severo-vostochnoi chasti Atlanticheskogo okeana (Validation of satellite derived primary production models in the Northeast Atlantic), Sovremennye problemy distantsionnogo zondirovaniya zemli iz kosmosa, 2015, Vol. 12, No. 2, pp. 114–126.
  8. Staritsyn D.K., Foux V.R., Koldunov A.V., Divergentsii techenii i formirovanie zon povyshennoi biologicheskoi produktivnosti v yaponskom more na osnove sputnikovykh dannykh (Divergences currents and the formation of zones of high biological productivity in the Japan/East Sea on the basis of satellite data), Vestnik Sankt-Peterburgskogo universiteta. Ser.7, Geologiya. Geografiya, 2010, No. 4. pp. 58–73.
  9. Suslin V.V., Churilova T.Ya., Dzhulai A.A., Moncheva S., Slabakova V., Krivenko O.V., Efimova T.V., Salyuk P.A., Regional'nyi algoritm vosstanovleniya kontsentratsii khlorofilla “a” i koeffitsienta pogloshcheniya sveta nezhivym organicheskim veshchestvom na dline volny 490 nm v chernom more dlya spektral'nykh kanalov tsvetovykh skanerov MODIS i MERIS (Regional reconstruction algorithm concentration of chlorophyll “a” and the light absorption coefficient of dead organic matter at a wavelength of 490 nm in the Black Sea for the spectral channels MODIS and MERIS color scanners), Ekologicheskaya bezopasnost' pribrezhnoi i shel'fovoi zon moray, 2014, No. 28, pp. 303–319.
  10. Shambarova Yu.V., Stepochkin I.E., Zakharkov S.P., Issledovanie izmenchivosti pervichnoi produktsii v Yaponskom more po sputnikovym dannym na osnove EOF-analiza (Study of the net primary production variability in the Japan Sea from satellite data using EOF-analysis), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015a, Vol. 12, No. 1. pp. 80–92.
  11. Shambarova Yu.V., Stepochkin I.E., Zakharkov S.P., Pervichnaya produktsiya severo-zapadnoi chasti yaponskogo morya po sputnikovym i “in-situ” dannym (Primary production of the northwestern part of the Japan/East Sea on the satellite and the in-situ data), In: Pontus Euxinus 2015: IX Vserossiiskoi nauchno-prakticheskoi konferentsii molodykh uchenykh po problemam vodnykh ekosistem, posvyashchennoi 100-letiyu so dnya rozhdeniya V.N. Greze (Pontus Euxinus 2015: abstracts IX all-Russian scientific-practical conference of young scientists (with international participation) on the problems of aquatic ecosystems, dedicated to the 100th anniversary of V.N. Greze), 2015b, pp. 196–197.
  12. Shtraikhert E.A., Zakharkov S.P., Gordeichuk T.N., Shambarova Yu.V., Kontsentratsiya khlorofilla-a i bio-opticheskie kharakteristiki v zalive Petra Velikogo (Yaponskoe more) vo vremya zimne-vesennego tsveteniya fitoplanktona (Chlorophyll-a concentration and bio-optical characteristics in the Peter the Great Bay (Sea of Japan) during winter-spring phytoplankton bloom), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 1, pp. 148–162.
  13. Shtraikhert E.A., Zakharkov S.P., D'yakov S.E., Korrektsiya sputnikovykh otsenok kontsentratsii khlorofilla-a dlya Yaponskogo morya (Correction of satellite estimates of chlorophyll-a concentration for the Sea of Japan), Issledovanie Zemli iz kosmosa, 2006, No. 6, pp. 72–82.
  14. Behrenfeld M.J., Falkowski P.G., Photosynthetic rates derived from satellite based chlorophyll concentration, Limnology and Oceanography, 1997, Vol. 42 (1), pp. 1–20.
  15. Gordon H.R., McCluney W.R., Estimation of the depth of sunlight penetration in the sea for remote sensing, Applied Optics, 1975, Vol. 14, pp. 413–416.
  16. Joo H.T., Son S.H., Park J.-W., Kang J.J., Jeong J.-Y., Lee C.I., Kang C.K., Lee S.H., Long-Term Pattern of Primary Productivity in the East/Japan Sea Based on Ocean Color Data Derived from MODIS-Aqua, Remote Sensing, 2016, Vol. 8 (25). DOI: 10.3390/rs8010025.
  17. Kameda T., Ishizaka J., Size-fractionated primary production estimated by the two-phytoplankton community model applicable for ocean color remote sensing, Journal of Oceanography, 2005, Vol. 61, pp. 663–672.
  18. Kwak J.H., Lee S.H., Park H.J., Choy E.J., Jeong H.D., Kim K.R., Kang C.K., Monthly measured primary and new productivities in the Ulleung Basin as a biological “hot spot” in the East/Japan Sea, Biogeosciences, 2013, Vol. 10, pp. 4405–4417. DOI: 10.5194/bg-10-4405-2013.
  19. Marra J., Trees C.C., O’Reily J.E., Phytoplankton pigment absorption: a strong predictor of primary productivity in the surface ocean, Deep-Sea Research I, 2007, Vol. 54, pp. 155–163.
  20. Milutinović S., Bertino L., Assessment and propagation of uncertainties in input terms through an ocean-color-based model of primary productivity, Remote Sensing of Environment, 2011, Vol. 115, pp. 1906–1917.
  21. Nagata H., Seasonal changes and vertical distributions of chlorophyll-a and primary productivity at the Yamato Rise, central Japan Sea, Plankton Biology and Ecology, 1998, Vol. 45, pp. 159–170.
  22. Petrenko D., Pozdnyakov D., Sychov V., Johannessen J., Counillon F., Satellite-derived multi-year trend in primary production in the arctic ocean, International Journal of Remote Sensing, 2013, Vol. 34 (11), pp. 3903–3937.
  23. Platt T., Sathyendranath S., Modelling marine primary production, Halifax, Nova Scotia, 2002, 280 p.
  24. Smith R.C., Remote sensing and depth distribution of ocean chlorophyll, Marine ecology – Progress series, 1981, Vol. 5, pp. 359–361.
  25. Yamada K., Ishizaka J., Nagata H., Spatial and temporal variability of satellite estimated primary production in the Japan Sea from 1998 to 2002, Journal of Oceanography, 2005, Vol. 61, pp. 857–869.