ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 1, pp. 207-215

Atmospheric total water vapor content retrieval using satellite microwave radiometer measurements of AMSR2

E.V. Zabolotskikh 1 , B. Chapron 2 
1 Russian State Hydrometeorological University, Saint Petersburg, Russia
2 IFREMER, Brest, France
Accepted: 21.11.2016
DOI: 10.21046/2070-7401-2017-14-1-207-215
The method of integrated water vapor content retrieval over open ocean from the data of Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard GCOM-W1 satellite is presented. The method is based on the numerical modeling of the brightness temperatures of non-precipitating ocean-atmosphere system. Neural Network approach is used for the inverse problem solution. Before use measured brightness temperatures are corrected to adjust model values to measured ones. This adjustment is based on the comparison of the AMSR2 measurements and brightness temperature calculations for the database of cloudless radiosounding measurements. The validation is fulfilled using independent radiosounding data from small island stations. The retrieval accuracy proved to be 1.14 kg/m2 for the tropical radiosounding station and 0.86 kg/m2 for polar stations. The total retrieval accuracy proved to be equal to the one calculated using model data – 1 kg/m2.
Keywords: integrated water vapor content, numerical modeling, brightness temperature, satellite passive microwave radiometers, Neural Network retrieval algorithms, AMSR2
Full text


  1. Zabolotskikh E.V., Chapron B., Neyronno-cetevoy metod otsenki intensivnosti dozhdya nad okeanami po dannym izmereniy sputnikovogo radiometra AMSR2 (Neural Network algorithm for rain rate retrieval over oceans using AMSR2 data), Izvestiya. Physika Atmosphery i Okeana, 2016, Vol. 52, No. 1. pp. 82–88.
  2. Alishouse J.C., Snyder S.A., Vongsathorn J., Ferraro R.R., Determination of oceanic total precipitable water from the SSM/I, IEEE Trans. Geosci. Remote Sens., 1990, Vol. 28, No. 5, pp. 811–816.
  3. Bobylev L.P., Zabolotskikh E.V., Mitnik L.M., Mitnik M.L., Atmospheric water vapor and cloud liquid water retrieval over the Arctic Ocean using satellite passive microwave sensing, IEEE Trans. Geosci. Remote Sens., 2010, Vol. 48, No. 1, pp. 283–294.
  4. Chapron B., Bingham A., Collard F., Donlon C., Johannessen J.A., Piolle J.F., Reul N., Ocean remote sensing data integration-examples and outlook, Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, ESA Publication, WPP-306, 2010.
  5. Kazumori M., A retrieval algorithm of atmospheric water vapor and cloud liquid water for AMSR-E, Eur. J. Remote Sens., 2012, pp. 63–74.
  6. Liebe H.J., Layton D.H., Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modeling: Nat. Tech. Inf. Service, Boulder, CO, 1987.
  7. Mallet C., Moreau E., Casagrande L., Klapisz C., Determination of integrated cloud liquid water path and total precipitable water from SSM/I data using a neural network algorithm, Int. J. Remote Sens., 2002, Vol. 23, No. 4, pp. 661–674.
  8. Mieruch S., Noël S., Bovensmann H., Burrows J.P., Analysis of global water vapour trends from satellite measurements in the visible spectral range, Atmospheric Chem. Phys., 2008, Vol. 8, No. 3, pp. 491–504.
  9. Miloshevich L.M., Vömel H., Whiteman D.N., Leblanc T. Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements, J. Geophys. Res., 2009, Vol. 114, No. D11, p. D11305.
  10. Wang Y., Fu Y., Liu G., Liu Q., Sun L., A new water vapor algorithm for TRMM Microwave Imager (TMI) measurements based on a log linear relationship, J. Geophys. Res. Atmospheres, 2009, Vol. 114, No. D21, p. D21304.
  11. Zabolotskikh E., Mitnik L., Chapron B., An Updated Geophysical Model for AMSR-E and SSMIS Brightness Temperature Simulations over Oceans, Remote Sens., 2014, Vol. 6, No. 3, pp. 2317–2342.