ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 1, pp. 88-98

Ionosphere and magnetosphere disturbance impact on operation slips of global navigation satellite systems

Yu.V. Yasyukevich 1 , I.V. Zhivetiev 2, 1 , A.S. Yasyukevich 1 , S.V. Voeykov 1 , V.I. Zakharov 3, 1 , N.P. Perevalova 1 , N.N. Titkov 4 
1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
2 Institute of Cosmophysical Research and Radiowave Propagation FEB RAS, Paratunka, Kamchatsky Krai, Russia
3 M.V. Lomonosov Moscow State University, Moscow, Russia
4 Kamchatka Branch, Geophysical Service RAS, Petropavlovsk-Kamchatskii, Russia
Accepted: 21.11.2016
DOI: 10.21046/2070-7401-2017-14-1-88-98
We studied the dynamics of the GPS and GLONASS radio navigation parameter slips, as well as the slips in measuring the total electron content (TEC). Analysis was performed for high- and mid-latitude stations under different geophysical conditions. We used the data over 2014 November – 2015 July. We found that P1 slip density at high latitudes for GLONASS is lower, than that for GPS. Under quiet geomagnetic condition, the TEC slip density N1 TECU/min at mid-latitudes does not almost correspond to Kp or AE, and is not higher than 12%. At high latitudes, in winter, N1 TECU/min is higher than that in summer, and reaches up to 50–60%. The TEC slip dynamic correlates with geomagnetic indices, but depends on Kp and AE differently. The TEC slip density under disturbed conditions increases with the AE growth slower, than that under quiet ones. On the contrary, the N1 TECU/min increase with Kp for disturbed conditions is 1.5 faster. The N1 TECU/min dependences on Wtec are similar for high- and mid-latitudes. The winter growth in N1 TECU/min with the Wtec increase is 1.5 times higher than that in summer. At high latitudes, the N1 TECU/min growth is 2–2.5 times higher than that at mid-latitudes.
Keywords: GNSS, GLONASS, GPS, slips, ionosphere, total electron content
Full text

References:

  1. Dem'yanov V.V., Yasyukevich Yu.V., Mekhanizmy vozdeistviya neregulyarnykh geofizicheskikh faktorov na funktsionirovanie sputnikovykh radionavigatsionnykh system (Mechanisms of impact of irregular geophysical factors on operation of radio positioning satellite systems), Irkutsk: Izd-vo IGU, 2014, 349 p.
  2. Aarons J., Lin B.J., Development of high latitude phase fluctuations during the January 10, April 10–11, and May 15, 1997 magnetic storms, J. Atm. Solar-Terr. Phys., 1999, Vol. 61, pp. 309–327. DOI: 10.1016/S1364-6826(98)00131-X.
  3. Afraimovich E.L., Demyanov V.V., Kondakova T.N., Degradation of GPS performance in geomagnetically disturbed conditions, GPS Solutions, 2003, Vol. 7, No. 2, pp. 109–119. DOI: 10.1007/s10291-003-0053-7.
  4. Astafyeva E., Yasyukevich Y., Maksikov A., Zhivetiev I., Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems, Space Weather, 2014, Vol. 12, No. 7, pp. 508–525. DOI: 10.1002/2014SW001072.
  5. Basu S., Basu S., MacKenzie E., Whitney H.E., Morphology of phase and intensity scintillations in the auroral oval and polar cap, Radio Sci., 1985, Vol. 20, No. 3, pp. 347–356. DOI: 10.1029/RS020i003p00347.
  6. Béniguel Y., Forte B., Radicella S.M., Strangeways H.J., Gherm V.E., Zernov N.N., Scintillations effects on satellite to Earth links for telecommunication and navigation purposes, Annals of Geophys., 2004, Vol. 47, No. 2/3, pp. 1179–1199. DOI: 10.4401/ag-3293.
  7. Demyanov V.V., Yasyukevich Yu.V., Jin S., Effects of Solar Radio Emission and Ionospheric Irregularities on GPS/GLONASS Performance, In: Geodetic Sciences – Observations, Modeling and Applications, InTech, 2013, pp. 177–222.
  8. Dow J.M., Neilan R.E., Rizos C., The International GNSS Service in a changing landscape of Global Navigation Satellite Systems, J. Geodesy, 2009, Vol. 83, pp. 191–198. DOI: 10.1007/s0019000803003.
  9. Gurtner W., Estey L., RINEX: The Receiver Independent Exchange Format Version 2.11. 2005, available at: ftp://igscb.jpl.nasa.gov/igscb/data/format/rinex211.txt.
  10. Kazimirovsky E.S., Coupling from below as a source of ionospheric variability: a review, Ann. of Geophys., 2002, Vol. 45, No. 1, pp. 1–29. DOI: 10.4401/ag-3482.
  11. Ledvina B.M., Makela J.J., Kintner P.M., First observations of intense GPS L1 amplitude scintillations at midlatitude, Geophys. Res. Lett., 2002, Vol. 29, No. 14. DOI: 10.1029/2002GL014770.
  12. Meggs R.W., Mitchell C.M., Honary F., GPS scintillation over the European arctic during the November 2004 storms, GPS Solut., 2008, Vol. 12, pp. 281–287. DOI: 10.1007/s10291-008-0090-3.
  13. Mushini S.C., Jayachandran P.T., Langley R.B., Pokhotelov D., Improved amplitude- and phase-scintillation indices derived from wavelet detrended high-latitude GPS data, GPS Solut., 2012, Vol. 16, pp. 363–373. DOI: 10.1007/s10291-011-0238-4.
  14. Perevalova N.P., Edemsky I.K., Timofeeva O.V., Katashevtseva D.D., Polyakova A.S., Dynamics of the level of total electron content disturbance at high and middle latitudes according to GPS, Solar-Terrestrial Physics, 2016, Vol. 2, Issue 1, pp. 50–60. DOI: 10.12737/19878.
  15. Pi X., Mannucci A.J., Lindqwister U.J., Ho C.M., Monitoring of global ionospheric irregularities using the worldwide GPS network, Geophys. Res. Lett., 1997, Vol. 24, No. 18, pp. 2283–2286. DOI: 10.1029/97GL02273.
  16. Rama Rao P.V.S., Gopi Krishna S., Vara Prasad J., Prasad S.N.V.S., Prasad D.S.V.V.D., Niranjan K., Geomagnetic storm effects on GPS based navigation, Ann. Geophys., 2009, Vol. 27, pp. 2101–2110. DOI: 10.5194/angeo-27-2101-2009.
  17. Skone S., de Jong M., The impact of geomagnetic substorms on GPS receiver performance, Earth, Planets and Space, 2000, Vol. 52, pp. 1067–1071. DOI: 10.1186/BF03352332.
  18. Stankov S.M., Jakowski N., Tsybulya K., Wilken V., Monitoring the generation and propagation of ionospheric disturbances and effects on Global Navigation Satellite System positioning, Radio Sci., 2006, Vol. 41, RS6S09. DOI: 10.1029/2005RS003327.
  19. Voeykov S.V., Berngardt O.I., Shestakov N.V., Use of the index of TEC vertical variation disturbance in studying ionospheric effects of the Chelyabinsk meteorite, Geomagnetism and Aeronomy, 2016, Vol. 56, No 2, pp. 219–228. DOI: 10.1134/S0016793216020122.
  20. Yeh K.C., Liu C.H., Radio wave scintillations in the ionosphere, Proc. IEEE, 1982, Vol. 70, No. 4, pp. 24–64. DOI: 10.1109/PROC.1982.12313.
  21. Zakharov V.I., Yasyukevich Yu.V., Titova M.A., Effect of magnetic storms and substorms on GPS slips at high latitudes, Cosmic Research, 2016, Vol. 54, Issue 1, pp. 20–30. DOI: 10.1134/S0010952516010147.