ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 1, pp. 113-124

Modelling the ecological niche of wheat septoriosis using remote sensing data

D.V. Malakhov 1 , N.Yu. Tsychueva 1 , I.S. Vitkovskaya 1 
1 National Center for Space Research and Technology, Almaty, Republic of Kazakhstan
Accepted: 07.02.2017
DOI: 10.21046/2070-7401-2017-14-1-113-124
The papers describes the modelling of suitable conditions for septoriosis outbreaks in main grain-producing regions of Kazakhstan. Model development consists of two major stages: the development of basic model by climatic variables and the updating of basic model with predictive factors obtained from remotely sensed data. The base model represents a set of climatic variables that is optimal for septoriosis manifestation (mean, maximal and minimal monthly temperatures, monthly precipitation, evapotranspiration etc.). This model is a starting point to develop prediction algorithms for disease outbreaks in major grain-producing regions of Kazakhstan. The model key parameters indicate that the cold season is crucially important within the life cycle of disease pathogen. Preliminary algorithm of septoriosis outbreaks forecast involves the use of dynamic variable – VCI (Vegetation Condition Index). VCI, calculated for a given year, is further used to outline the most probable areas of septoriosis outbreak if applied along with basic model. The presence of certain correlations between traditionally used HTC (Hydrothermal coefficient by Selyaninov) and VCI confirmed the usage of VCI. HTC, which is important factor for septoriosis development, has, however, high approximation level because its calculation assumes the interpolation of small number of meteorological stations data within a large area. VCI calculated from satellite data is an objective indicator of vegetation condition having high spatial resolution. The suitability and reliability of VCI in conjunction with the base model of the ecological niche of Septoria for predicting disease outbreaks are discussed in this paper and represent the subject of further study.
Keywords: septoriosis, ecological niche, VCI, hydrothermal coefficient
Full text


  1. Borzionova T.I., Vasetskaya M.N., Osobennosti razvitiya septorioza v usloviyakh lesostepnykh i predgornykh raionov Altaiskogo kraya (Peculiarities of septoriosis development in forest-steppe and foothill regions of Altay), Sibirskyi vestnik selskohozaystvennoi nauki, 1991, No. 1, pp. 43–46.
  2. Vasetskaya M.N., Sostoyanie i perspektivy issledovanii septorioza pshenitsy v SSSR (The state and perspectives of septoriosis study in USSR), In: Povyshenie produktivnosti i ustoichivosti proizvodstva zerna ozimoi pshenitsy v SSSR, Mironovka, 1989, pp. 115–129.
  3. Ishkova T.I., Berestetskaya L.I., Gasich E.L., Vlasov D.Yu., Uchebno-metodicheskoe posobie po diagnostike osnovnykh gribnykh boleznei khlebnykh zlakov (Training manual on major fungal disease of crop plants diagnostics), Saint-Petersburg: VIZR, 2001, 76 p.
  4. Koyshibayev M., Bolezni zernovykh kul'tur (Infections of crop plants), Almaty: Bastau, 2002, 376 p.
  5. Koyshibayev M., Ismailova E.T., Osobennosti razvitiya i vredonosnost' septorioza pshenitsy v Kazakhstane (Development peculiarities and harmfulness of septoriosis in Kazakhstan), Vestnik selskokhozyastvennoy nauki Kazakhstana, 1991, No. 11, pp. 31–36.
  6. Sanina A.A., Antsiferova L.V., Vidovoi sostav gribov roda Septoria Sacc. na pshenitse v Evropeiskoi chasti SSSR (Specific composition of fungi Septoria Sacc. on the wheat of European part of USSR), Mikologiya i fytopatologya, 1991, Vol. 25, No. 3, pp. 250–252.
  7. Seljaninov G.T., Metodika sel'skohozjajstvennoj harakteristiki klimata (Method of agricultural characterization of climate), In: Mirovoi agroklimaticheskii spravochnik, Leningrad: Godrometeoizdat, 1937, pp. 5–27.
  8. Urovni i tendentsii izmeneniya vidovogo sostava i vnutripopulyatsionnoi struktury, arealy kompleksov vrednykh i poleznykh organizmov i prognoz opasnykh fitosanitarnykh situatsii po zonam strany (Levels and trends in species and intrapopulation structural changes, areas of harmful and beneficial organisms along with harmful phytosanitary situations by country zones), Novozhilov K.V., Zakharenko V.A. (eds.), Saint-Petersburg: RAAS, 2000, 100 p.
  9. Addink E.A., de Jong S.M., Davis S.A., Dubyanskiy V., Leirs H., Using very high spatial resolution remote sensing to monitor and combat outbreaks of bubonic plague in Kazakhstan, Anais XIV Simpósio Brasileiro de Sensoriamento Remoto, Natal. Brasil, 25–30 April 2009, INPE, pp. 7529–7536.
  10. Franklin J., Mapping species: Distributions. Spatial inference and prediction. Department of Geography and the Environment, University of Texas, Austin, Texas, USA, 2012, 320 p.
  11. Graham C.H., Hijmans R.J., A comparison of methods for mapping species ranges and species richness, Global Ecology and Biogeography, 2006, Vol. 15, pp. 578–587.
  12. Hielkama J.U., Roffey J., Tucker C.J., Assessment of ecological conditions associated with the 1980/81 desert locust plague upsurge in West Africa using environmental satellite data, International Journal of Remote Sensing, 1986, Vol. 7, No. 11, pp. 1609–1622.
  13. Hutchinson G.E., Concluding remarks, Cold Spring Harbor Symposia on Quantitative Biology, 1957. No. 22, pp. 415–427. Reprinted in 1991: Classics in Theoretical Biology. Bull. of Math. Biol., Vol. 53, pp. 193–213.
  14. Kitron U., Kazmierczak J.J., Spatial analysis of the distribution of Lyme disease in Wisconsin, Am. J. Epidemiol., 1997, Vol. 145, pp. 558–66.
  15. Khafagi O., Hatab E.E., Omar K., Ecological Niche Modeling as a Tool for Conservation Planning: Suitable Habitat for Hypericum sinaicum in South Sinai, Egypt, Universal Journal of Environmental Research and Technology, 2012, Vol. 2, Issue 6, pp. 515–524.
  16. Kogan F.N., Operational Space Technology for Global Vegetation Assessment, Bull. Amer. Meteor. Soc., 2001, Vol. 82, Issue 9, pp. 1949–1964.
  17. Rahman A., Kogan F., Roytman L., Goldberg M., Guo W., Modelling and prediction of malaria vector distribution in Bangladesh from remote-sensing data, International Journal of Remote Sensing, 2011, Vol. 32, Issue 5, pp. 1233–1251.
  18. Raxworthy C.J., Ingram C.M., Rabibisoa N., Pearson R.G., Applications of Ecological Niche Modeling for Species Delimitation: A Review and Empirical Evaluation Using Day Geckos (Phelsuma) from Madagascar, Syst. Biol., 2007, Vol. 56, Issue 6, pp. 907–923.
  19. Thomson M.C., Connor S.J., Milligan P.J.M., Flasse S.P., The ecology of malaria-as seen from Earth-observation satellites, Ann. Trop. Med. Parasitol., 1996, Vol. 90, pp. 243–64.
  20. Unganai L.S., Kogan F.N., Drought Monitoring and Corn Yield Estimation in Southern Africa from AVHRR Data, Remote Sens. Environ., 1998, Vol. 63, pp. 219–232.
  21. Seiler R.A., Kogan F., Guo W., Monitoring weather impact and crop yield from NOAA AVHRR data in Argentina, Adv. Space Res., 2000, Vol. 26, No. 7, pp. 1177–1185.