ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 1, pp. 136-146

Image analysis of Sentinel 1 for flood detection in Altai Region in April 2015 and Ryazan Region in April 2016

N.V. Rodionova 1 
1 Kotel’nikov FIRE RAS, Fryazino, Russia
Accepted: 31.01.2017
DOI: 10.21046/2070-7401-2017-14-1-136-146
The present study is dedicated to flooded area detection using radar images of Sentinel 1 for two Russian rivers – Aley river (Altai Krai) in April 2015, and Moksha river (Ryazan Region) in April 2016. Multi-temporal image flood mapping involves acquiring flood and non-flood images of the same area and combining them to get an image which indicates change by colors appearing in the image. The thresholds for flooded areas and flooding under vegetated areas are determined in accordance with the method of (Long et al., 2014): the first threshold allocates a region of open water without waterlogged vegetation (dark pixels), and the second one – a region with partially waterlogged vegetation (bright pixels). Another way to determine flooded area is to use a known water surface with known backscattering coefficient, and to determine difference of two images: the water surface, which is not in non-flood image, appears in bright tone in the difference image. Another possibility to map partially waterlogged vegetation is to use the effect of double bounce scattering. This approach due to the lack of the full polarimetry data is performed by means of Haralick’s texture features ‘contrast’ and ‘entropy’.
Keywords: remote sensing, SAR imagery, flooding, flooded in vegetation, polarization, change detection, multi-temporal images, difference image, textural features
Full text


  1. Rodionova N.V., Statisticheskii teksturnyi analiz radiolokatsionnykh izobrazhenii, poluchennykh s ISZ ALMAZ (Statistical texture analysis of “ALMAZ” SAR images), Issledovanie Zemli iz kosmosa, 1994, No. 2, pp. 59–64.
  2. Rodionova N.V., Klassifikatsiya poverkhnosti na polyarimetricheskikh RLI s ispol'zovaniem tekstury i razlozheniya po mekhanizmam rasseyaniya (Unsupervised terrain classification on fully polarimetric SAR images using decomposition and texture), Issledovanie Zemli iz kosmosa, 2007, No. 4, pp. 8–14.
  3. Rodionova N.V., Teksturnaya segmentatsiya odnokanal'nykh izobrazhenii (One channel image textural segmentation), Sovremennye problemy distantsionnogo zondirovaniya zemli iz kosmosa, 2012, Vol. 9, No. 3, pp. 65–69.
  4. Brisco B., Li K., Tedford B., Charbonneau F., Yun S., Murnaghan K., Compact polarimetry assessment for rice and wetland mapping, Int. J. Remote Sens., 2013, Vol. 34, pp. 1949−1964.
  5. Di Baldassarre G., Schumann G., Brandimarte L., Bates P., Timely Low Resolution SAR Imagery to Support Floodplain Modeling: A Case Study Review, Survey in Geophysics, 2001, Vol. 32, No.3, pp. 255–69.
  6. Freeman A., Durden S.L., A three-component scattering model for polarimetric SAR data, IEEE Trans. GRS, 1998, Vol. 36, No. 3, pp. 963–973.
  7. Haralick R.M., Textural Features for Image Classification, IEEE. Trans. Syst. Man and Cybernetics, 1973, Vol. 3, No. 6, pp. 610–621.
  8. Henry J.B., Chastanet P., Fellah K., Desnos Y.L., ENVISAT multi-polarised ASAR data for flood mapping, International Journal of Remote Sensing, 2006, Vol. 27, No. 10, pp. 1921–1929.
  9. Hess L.L., Melack J.M., Filoso S., Wang Y., Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar, IEEE Trans. Geosci. Remote Sens., 1995, Vol. 33, pp. 896–904.
  10. Hess L., Melack J., Novo E., Barbosa C., Gastil M., Dual season mapping of wetland inundation and vegetation for the central Amazon Basin, Remote Sens. Environ., 2003, Vol. 87, pp. 404−428.
  11. Long S., Fatoyinbo T., Policelli F., Flood extent mapping for Namibia using change detection and thresholding with SAR, Environ. Res. Lett., 2014, Vol. 9, 035002. DOI: 10.1088/1748-9326/9/3/035002.
  12. Martinis S., Rieke C., Backscatter Analysis Using Multi-Temporal and Multi-Frequency SAR Data in the Context of Flood Mapping at River Saale, Germany, Remote Sens., 2015, Vol. 7, pp. 7732–7752.
  13. Musa Z.N., Popescu I., Mynett A., A review of applications of satellite SAR, optical, altimetry and DEM data for surface water modelling, mapping and parameter estimation, Hydrol. Earth Syst. Sci., 2015, Vol. 19, pp. 3755–3769. URL: doi:10.5194/hess-19-3755-2015.
  14. Richards J.A., Woodgate P.W., Skidmore A.K., An explanation of enhanced radar backscattering from flooded forests, Int. J. Remote Sens., 1987, Vol. 8, pp. 1093–1100.
  15. Scheuchl B., Flett D., Caves R., Cumming I., Potential of RADARSAT-2 data for operational sea ice monitoring, Can. J. Remote Sens., 2004, Vol. 30, pp. 448–461.
  16. Schumann G., Matgen P., Hoffmann L., Hostache R., Pappenberger F., Pfister L., Deriving distributed roughness values from satellite radar data for flood inundation modeling, J. Hydrol., 2007, Vol. 344, pp. 96–111. DOI: 10.1016/j.jhydrol.2007.06.024.
  17. Schumann G., Hostache R., Puech C., Hoffmann L., Matgen P., Pappenberger F., Pfister L., High-resolution 3-D flood information from radar imagery for flood hazard management, IEEE Trans. Geosc. Rem. Sens., 2007, Vol. 45, No. 6, pp. 1715–1725.
  18. Townsend P.A., Mapping seasonal flooding in forested wetlands using multi-temporal SAR, Photogramm. Eng. Remote Sens., 2001, Vol. 67, pp. 857–864.
  19. White L., Brisco B., Dabboor M., Schmitt A., Pratt A., A Collection of SAR Methodologies for Monitoring Wetlands, Remote Sens., 2015, Vol. 7, pp. 7615–7645. DOI: 10.3390/rs70607615.