ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 1, pp. 226-244

Simple radiative model of clear sky and cloudy atmosphere

A.S. Ginzburg 1 , I.N. Melnikova 2, 3 , S.S. Novikov 3 , V.A. Frolkis 4, 5 
1 A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia
2 St. Petersburg State University, St. Petersburg, Russia
3 Russian State Hydrometeorological University, St. Petersburg, Russia
4 St. Petersburg State Transport University, St. Petersburg, Russia
5 A.I. Voeikov Main Geophysical Observatory, St. Petersburg, Russia
Accepted: 25.01.2017
DOI: 10.21046/2070-7401-2017-14-1-226-244
This article is the continuation of the study (Ginzburg et al., 2016). The results of calculating the hemispherical fluxes of the reflected and transmitted solar radiation by the atmosphere and of radiative divergence on the basis of simple optical models for cloudless and cloudy atmosphere are presented. The Delta-Eddington approach is used for the problem solution, which is applicable in a wide range of atmospheric optical parameters. The article discusses the spectral values of the extra-atmospheric radiation by several literary sources. The calculation was done for surface albedo values of 0, 0.5, 0.9 and for the spectral values of a sandy surface. 4 values of solar zenith angle: 0, 30, 40 and 60 degrees are considered. The obtained values are compared with the data of airborne observations of hemispherical solar flux. When comparing with experimental data values of the solar angle corresponding to experimental were used. It is shown that the use of simple optical models allows to obtain real values of the radiative characteristics, and the approach used for calculation provides sufficient accuracy of the result for many problems. Estimation of the local instantaneous radiative forcing of atmospheric aerosols and clouds for 3 models of the contents of the aerosol and cloud layer models considered in (Ginzburg et al., 2016) is accomplished along with the heating rate of the troposphere for the considered models. The following analysis is performed: dependence of radiative characteristics from the atmospheric optical thickness for 4 values of the solar zenith angles, the 2 values of the surface albedo 0 and 0.9 and 2-values of the single scattering albedo (SSA) 0,750 and 0,999. It is found out that these dependencies are significantly different for the considered models of the atmosphere. This in its turn clearly describes the influence of optical parameters of the atmosphere and surface at the transformation of the solar radiation field.
Keywords: solar radiation, hemispherical flux, radiative divergence, radiative forcing, surface albedo, optical thickness, single scattering albedo
Full text

References:

  1. Vasilyev A.V., Melnikova I.N., Korotkovolnovoe solnechnoe izluchenie v atmosfere Zemli. Raschety. Interpretatsiya. Izmereniya (Short-wave solar radiation in the Earth atmosphere. Calculation. Interpretation. Observation), St. Petersburg: NIIH, SPSU, 2002, 388 p.
  2. Ginzburg A.S., Gubanova D.P., Minashkin V.M., Vliyanie estestvennykh i antropogennykh aerozolei na global'nyj i regional'nyj klimat (Influence of natural and anthropogenic aerosols on the global and regional climate), Rossiiskii khimicheskii zhurnal, 2008, Vol. LII, No. 5, pp. 112−119.
  3. Ginzburg A.S., Melnikova I.N., Samulenkov D.A., Sapunov M.V., Katkovskij L.V., Prostaya opticheskaya model' bezoblachnoi i oblachnoi atmosfery dlya rascheta potokov solnechnoi radiatsii (Simple optical model of the clear-sky and cloudy atmosphere), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 175–192.
  4. Kondratyev K.Ya., Binenko V.I., Vliyanie oblachnosti na radiatsiyu i klimat (Cloud influence on radiation and climate), Leningrad: Gidrometeoizdat, 1984, 240 p.
  5. Kondrat'ev K.Ja., Binenko V.I., Melnikova I.N., Pogloshhenie solnechnoi radiatsii oblachnoi i bezoblachnoi atmosferoi (Absorption of solar radiation in clear-sky and cloudy atmosphere), Meteorologiya i gidrologiya, 1996, No. 2, pp. 14−23.
  6. Kondrat'ev K.Ja., Zhvalev V.F., Pervyi globalnyi experiment POLEKS. 2. Polyarnyi aerosol, protyazhennaya oblachnost i radiatsiya (First Global GARP Experiment. 2. Polar aerosols, extended cloudiness, and radiation), Leningrad: Gidrometeoizdat, 1981, 150 p.
  7. Makarova E.A., Haritonov A.V., Kazachevskaja T.V., Potok solnechnogo izlucheniya (The solar radiation flux), Moscow: Nauka, 1991, 400 p.
  8. Matveev L.T., Fizika atmosfery (Atmospheric physics), St. Petersburg, Gidrometeoizdat, 2000, 778 p.
  9. Minin I.N., Teoriya perenosa izlucheniya v atmosferakh planet (Radiation transfer theory in planet atmosphere), Moscow: Nauka, 1988, 264 p.
  10. Frolkis V., Rozanov E., “Radiation code for climate and general circulation models”, In: Current problems in Atmospheric Radiation, Proceedings of IRS'92, Hampton, USA: A.DEEPAK Publ., 1993, pp. 176–179.
  11. Ginzburg A.S. Climate and atmospheric consequences of nuclear war, Ambio, 1989, Vol. XVIII, No. 7, pp. 384–390.
  12. Harshvardhan, King M.D., Comparative accuracy of diffuse radiative properties computed using selected multiple scattering approximations, Journal of the Atmospheric Sciences, 1993, Vol. 50, pp. 247–259.
  13. Johnson F.S., The Solar Constant, Journal of Meteorology, 1954, Vol. 11, No. 6, pp. 423–441.
  14. Joseph J.H., Wiscombe W.J., Weiman J.A., The delta-Eddington approximation for radiative flux transfer, Journal of the Atmospheric Sciences, 1976, Vol. 33, pp. 2452–2459.
  15. King M.D., Radke L., Hobbs P.V., Determination of the spectral absorption of solar radiation by marine stratocumulus clouds from airborne measurements within clouds, Journal of the Atmospheric Sciences, 1990, Vol. 47, pp. 894–907.
  16. Kneizis F.X., Abreu L.W., Anderson G.P., Chetwynd G.H., Shettle E.P., Berk A., Bernstein L.S., Robertson D.S., Acharya P., Rothman L.S., Selby J.E.A., Gallery W.O., Clouth S.A. The Modtran 2/3. Report and Lowtran 7 model. Phillips Laboratory, Massachusetts, Hanscon: 1996, 230 p.
  17. Koepke P., Hess M., Bretl S., Seefeldner M., UV irradiance on the human skin: Effects of orientation and sky obstructions. Current Problems in Atmospheric Radiation, Proceedings of IRS 2008, American Institute of Physics, 2009, pp. 53–56.
  18. Kondratyev K.Ya., Binenko V.I., Melnikova I.N., Absorption of solar radiation by clouds and aerosols in the visible wavelength region. Meteorology and Atmospheric Physics. No. 0/319, 1997, pp. 1–10.
  19. Kondratyev K.Ya., Fedorova M.P., Radiation regime of inclined surfaces, WMO Technical Note, Geneva, 1977, No. 152, 82 p.
  20. La Lettre du Changement global, INSU/CNRS February 2002. No. 13, ISSN: 1261-4246, 2002, 88 p.
  21. Melnikova I., Vasilyev A., Samulenkov D., Sapunov M., Tagaev V., The Correction for Multiple Scattering of the Lidar Retrieving in Thin Clouds. Current Problems in Atmospheric Radiation, Proceedings of IRS 2016, Auckland, New Zealand, (in print).
  22. Reddy K., Phanikumar D.V., Joshi Hema, Ahammed Y.N., Naja M., Effect of diurnal variation of aerosols on surface reaching solar radiation, Journal of Atmospheric and Solar-Terrestrial Physic, 2015, Vol. 129, pp. 62–68.
  23. Varotsos C.A., Melnikova I.N., Cracknel A.P., Tzanis C., Vasilyev A.V., New spectral functions of the near-ground albedo derived from aircraft diffraction spectrometer observations, Atmospheric Chemistry and Physics, 2014, Vol. 14, pp. 6953–6965.
  24. Wallace, John M., Peter V. Hobbs, Atmospheric Science (an introductory survey), Academic Press, 1977, 475 p.
  25. Xu H., Guo J., Ceamanos X., Roujean J.-L., Min M., Carrer D., On the influence of the diurnal variations of aerosol content to estimate direct aerosol radiative forcing using MODIS data, Atmospheric Environment, 2016, Vol. 141, pp. 186–196.