Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 1, pp. 40-49
Establishing the correspondence between vector reference patterns and halftone images
1 Space Research Institute RAS, Moscow, Russia
Accepted: 13.01.2017
DOI: 10.21046/2070-7401-2017-14-1-40-49
In tasks associated with remote sensing of the Earth, optical measurements, in particular, correlation-extreme navigation, it is necessary to establish the correspondence between a reference pattern and an actually observed image. Currently, best of all the correspondence between raster forms is investigated. However, vector reference patterns have some advantages compared to raster ones. In particular, small volume, the possibility of linear and non-linear transformations as well as the possibility of correcting shooting camera distortions at small computational costs are the main advantages of vector reference patterns. Two different algorithms to establish the correspondence between vector reference patterns and raster images are considered in this article. Both are designed for navigation tasks. The first algorithm establishes the correspondence between a shoreline map and a raster image without explicitly extracting the borders between the ocean and continent in the raster image. This algorithm does not require high quality of cloud recognition in raster images. But the search for extremum of the similarity function between a shoreline map pattern and raster image requires significant computational expenses. The second algorithm includes the search for borders between the ocean and continent in raster images explicitly and requires substantially lower computational expenses. However, it requires high quality of cloud detection algorithms in raster images.
Keywords: correlation-extreme navigation, vector reference pattern, shoreline map
Full textReferences:
- Grishin V.A., Povyshenie tochnosti navigatsii kosmicheskikh apparatov pri ispol'zovanii global'noi karty beregovykh linii (Increasing of spacecraft navigation precision by using of the global shoreline database), Tekhnicheskoe zrenie, 2014, No. 1, pp. 44–52.
- Egoshkin N., Eremeev V., Kozlov E., Moskatin'ev I., Moskvitin A., Geodezicheskaya privyazka izobrazhenii ot geostatsionarnykh sputnikov po konturu diska Zemli i elektronnym kartam (Geodetic binding of images from the geostationary satellite on a contour of a disk of the Earth and electronic maps), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2009, Vol. 1, No. 6, pp. 132–138.
- Katamanov S., Avtomaticheskaya privyazka izobrazhenii geostatsionarnogo sputnika MTSAT-1R (Automatic registration of images from geostationary satellite MTSAT-1R), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2007, Vol. 1, No. 4, pp. 63–68.
- Katamanov S., Tochnaya geograficheskaya privyazka izobrazhenii geostatsionarnogo sputnika MTSAT-1R v formate HRIT (Accurate HRIT Image Navigation for Geostationary Satellite MTSAT-1R), Sovremennye problemy distantsionnogo zondioaniya Zemli iz kosmosa, 2012, Vol. 9, No. 1, pp. 97–105.
- Katamanov S., Razrabotka avtomaticheskogo metoda geograficheskoi privyazki izobrazhenii MVISR polyarno-orbital'nogo sputnika FengYun-1D (Development of automatic method navigation for MVISR imagery of polar-orbital satellite FengYun-1D), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 3, pp. 85–93.
- Mal'tsev E.A., Sirotin E.E., Perfil'ev D.A., Tsibul'skii G.M., Izmerenie oblachnosti na snimkakh, poluchennykh so sputnika SPOT-4 (The Cloud Cover Measurement of the Spot-4 Satellite Images), Zhurnal Sibirskogo federal'nogo universiteta, Seriya: Tekhnika i tekhnologii, 2012, Vol. 5, No. 2, pp. 229–242.
- Maslov I.A., Grishin V.A., Nekotorye rezul'taty monitoringa morskogo gorizonta v krasnoi i blizhnei infrakrasnoi oblastyakh spectra (Some results of monitoring marine horizon in the red and near infrared spectral ranges), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 1, pp. 171–180.
- Daugman J., How Iris Recognition Works, IEEE Transactions on Circuits and Systems for Video Technology, 2004, Vol. 14, No. 1, pp. 21–30.
- Fujii K., Arakawa K., Automatic Registration of Satellite Image to Map in Urban Area, Theory and Applications of GIS, 2004,Vol. 12, No. 1, pp. 15–22.
- Global Self-consistent, Hierarchical, High-resolution Geography Database (GSHHG), 2015, http://www.soest.hawaii.edu/pwessel/gshhg/.
- Habbecke M., Kobbelt L., Automatic Registration of Oblique Aerial Images with Cadastral Maps, Trends and Topics in Computer Vision, Vol. 6554 of the series Lecture Notes in Computer Science, Kiriakos N. Kutulakos (ed.), 2012, pp. 253–266.
- Li Y., Briggs R., Automated Georeferencing Based on Topological Point Pattern Matching, Proceedings of The International Symposium on Automated Cartography (AutoCarto'06), Vancouver, 2006.
- Wang C., Stefanidis A., Croitoru A., Agouris P., Map Registration of Image Sequences Using Linear Features, Photogrammetric Engineering & Remote Sensing, 2008, Vol. 74, No. 1, pp. 25–38.
- Wessel R., Smith W., A global, self-consistent, hierarchical, high-resolution shoreline database, Journal of Geophysical Research, 1996, Vol. 101, No. B4, pp. 8741–8743.